Metamath Proof Explorer


Theorem ralimdv

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90 ( alim ). (Contributed by NM, 8-Oct-2003)

Ref Expression
Hypothesis ralimdv.1
|- ( ph -> ( ps -> ch ) )
Assertion ralimdv
|- ( ph -> ( A. x e. A ps -> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ralimdv.1
 |-  ( ph -> ( ps -> ch ) )
2 1 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
3 2 ralimdva
 |-  ( ph -> ( A. x e. A ps -> A. x e. A ch ) )