Metamath Proof Explorer


Theorem ralimdv2

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005)

Ref Expression
Hypothesis ralimdv2.1
|- ( ph -> ( ( x e. A -> ps ) -> ( x e. B -> ch ) ) )
Assertion ralimdv2
|- ( ph -> ( A. x e. A ps -> A. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 ralimdv2.1
 |-  ( ph -> ( ( x e. A -> ps ) -> ( x e. B -> ch ) ) )
2 1 alimdv
 |-  ( ph -> ( A. x ( x e. A -> ps ) -> A. x ( x e. B -> ch ) ) )
3 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
4 df-ral
 |-  ( A. x e. B ch <-> A. x ( x e. B -> ch ) )
5 2 3 4 3imtr4g
 |-  ( ph -> ( A. x e. A ps -> A. x e. B ch ) )