Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralimdv2.1 | |- ( ph -> ( ( x e. A -> ps ) -> ( x e. B -> ch ) ) ) |
|
Assertion | ralimdv2 | |- ( ph -> ( A. x e. A ps -> A. x e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv2.1 | |- ( ph -> ( ( x e. A -> ps ) -> ( x e. B -> ch ) ) ) |
|
2 | 1 | alimdv | |- ( ph -> ( A. x ( x e. A -> ps ) -> A. x ( x e. B -> ch ) ) ) |
3 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
4 | df-ral | |- ( A. x e. B ch <-> A. x ( x e. B -> ch ) ) |
|
5 | 2 3 4 | 3imtr4g | |- ( ph -> ( A. x e. A ps -> A. x e. B ch ) ) |