Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimdv2.1 | |- ( ph -> ( ( x e. A -> ps ) -> ( x e. B -> ch ) ) ) |
|
| Assertion | ralimdv2 | |- ( ph -> ( A. x e. A ps -> A. x e. B ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv2.1 | |- ( ph -> ( ( x e. A -> ps ) -> ( x e. B -> ch ) ) ) |
|
| 2 | 1 | alimdv | |- ( ph -> ( A. x ( x e. A -> ps ) -> A. x ( x e. B -> ch ) ) ) |
| 3 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
| 4 | df-ral | |- ( A. x e. B ch <-> A. x ( x e. B -> ch ) ) |
|
| 5 | 2 3 4 | 3imtr4g | |- ( ph -> ( A. x e. A ps -> A. x e. B ch ) ) |