Metamath Proof Explorer


Theorem ralimdva

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90. (Contributed by NM, 22-May-1999) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019)

Ref Expression
Hypothesis ralimdva.1
|- ( ( ph /\ x e. A ) -> ( ps -> ch ) )
Assertion ralimdva
|- ( ph -> ( A. x e. A ps -> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ralimdva.1
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
2 1 ex
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
3 2 a2d
 |-  ( ph -> ( ( x e. A -> ps ) -> ( x e. A -> ch ) ) )
4 3 ralimdv2
 |-  ( ph -> ( A. x e. A ps -> A. x e. A ch ) )