Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90. (Contributed by NM, 22-May-1999) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimdva.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) | |
| Assertion | ralimdva | |- ( ph -> ( A. x e. A ps -> A. x e. A ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralimdva.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) | |
| 2 | 1 | ex | |- ( ph -> ( x e. A -> ( ps -> ch ) ) ) | 
| 3 | 2 | a2d | |- ( ph -> ( ( x e. A -> ps ) -> ( x e. A -> ch ) ) ) | 
| 4 | 3 | ralimdv2 | |- ( ph -> ( A. x e. A ps -> A. x e. A ch ) ) |