Description: Deduction doubly quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralimdvv.1 | |- ( ph -> ( ps -> ch ) ) |
|
Assertion | ralimdvv | |- ( ph -> ( A. x e. A A. y e. B ps -> A. x e. A A. y e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdvv.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | 1 | adantr | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) ) |
3 | 2 | ralimdvva | |- ( ph -> ( A. x e. A A. y e. B ps -> A. x e. A A. y e. B ch ) ) |