Description: Deduction doubly quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimdvv.1 | |- ( ph -> ( ps -> ch ) ) |
|
| Assertion | ralimdvv | |- ( ph -> ( A. x e. A A. y e. B ps -> A. x e. A A. y e. B ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdvv.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | 1 | adantr | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) ) |
| 3 | 2 | ralimdvva | |- ( ph -> ( A. x e. A A. y e. B ps -> A. x e. A A. y e. B ch ) ) |