Metamath Proof Explorer


Theorem ralimdvva

Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90 ( alim ). (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypothesis ralimdvva.1
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) )
Assertion ralimdvva
|- ( ph -> ( A. x e. A A. y e. B ps -> A. x e. A A. y e. B ch ) )

Proof

Step Hyp Ref Expression
1 ralimdvva.1
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) )
2 1 anassrs
 |-  ( ( ( ph /\ x e. A ) /\ y e. B ) -> ( ps -> ch ) )
3 2 ralimdva
 |-  ( ( ph /\ x e. A ) -> ( A. y e. B ps -> A. y e. B ch ) )
4 3 ralimdva
 |-  ( ph -> ( A. x e. A A. y e. B ps -> A. x e. A A. y e. B ch ) )