Metamath Proof Explorer


Theorem ralimi

Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997)

Ref Expression
Hypothesis ralimi.1
|- ( ph -> ps )
Assertion ralimi
|- ( A. x e. A ph -> A. x e. A ps )

Proof

Step Hyp Ref Expression
1 ralimi.1
 |-  ( ph -> ps )
2 1 a1i
 |-  ( x e. A -> ( ph -> ps ) )
3 2 ralimia
 |-  ( A. x e. A ph -> A. x e. A ps )