Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimi2.1 | |- ( ( x e. A -> ph ) -> ( x e. B -> ps ) ) |
|
| Assertion | ralimi2 | |- ( A. x e. A ph -> A. x e. B ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi2.1 | |- ( ( x e. A -> ph ) -> ( x e. B -> ps ) ) |
|
| 2 | 1 | alimi | |- ( A. x ( x e. A -> ph ) -> A. x ( x e. B -> ps ) ) |
| 3 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 4 | df-ral | |- ( A. x e. B ps <-> A. x ( x e. B -> ps ) ) |
|
| 5 | 2 3 4 | 3imtr4i | |- ( A. x e. A ph -> A. x e. B ps ) |