Metamath Proof Explorer


Theorem ralimi2

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004)

Ref Expression
Hypothesis ralimi2.1
|- ( ( x e. A -> ph ) -> ( x e. B -> ps ) )
Assertion ralimi2
|- ( A. x e. A ph -> A. x e. B ps )

Proof

Step Hyp Ref Expression
1 ralimi2.1
 |-  ( ( x e. A -> ph ) -> ( x e. B -> ps ) )
2 1 alimi
 |-  ( A. x ( x e. A -> ph ) -> A. x ( x e. B -> ps ) )
3 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
4 df-ral
 |-  ( A. x e. B ps <-> A. x ( x e. B -> ps ) )
5 2 3 4 3imtr4i
 |-  ( A. x e. A ph -> A. x e. B ps )