Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralimi2.1 | |- ( ( x e. A -> ph ) -> ( x e. B -> ps ) ) |
|
Assertion | ralimi2 | |- ( A. x e. A ph -> A. x e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi2.1 | |- ( ( x e. A -> ph ) -> ( x e. B -> ps ) ) |
|
2 | 1 | alimi | |- ( A. x ( x e. A -> ph ) -> A. x ( x e. B -> ps ) ) |
3 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
4 | df-ral | |- ( A. x e. B ps <-> A. x ( x e. B -> ps ) ) |
|
5 | 2 3 4 | 3imtr4i | |- ( A. x e. A ph -> A. x e. B ps ) |