Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimia.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
| Assertion | ralimia | |- ( A. x e. A ph -> A. x e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
| 2 | 1 | a2i | |- ( ( x e. A -> ph ) -> ( x e. A -> ps ) ) |
| 3 | 2 | ralimi2 | |- ( A. x e. A ph -> A. x e. A ps ) |