Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralimiaa.1 | |- ( ( x e. A /\ ph ) -> ps ) |
|
Assertion | ralimiaa | |- ( A. x e. A ph -> A. x e. A ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimiaa.1 | |- ( ( x e. A /\ ph ) -> ps ) |
|
2 | 1 | ex | |- ( x e. A -> ( ph -> ps ) ) |
3 | 2 | ralimia | |- ( A. x e. A ph -> A. x e. A ps ) |