Metamath Proof Explorer


Theorem ralimiaa

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007)

Ref Expression
Hypothesis ralimiaa.1
|- ( ( x e. A /\ ph ) -> ps )
Assertion ralimiaa
|- ( A. x e. A ph -> A. x e. A ps )

Proof

Step Hyp Ref Expression
1 ralimiaa.1
 |-  ( ( x e. A /\ ph ) -> ps )
2 1 ex
 |-  ( x e. A -> ( ph -> ps ) )
3 2 ralimia
 |-  ( A. x e. A ph -> A. x e. A ps )