Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimiaa.1 | |- ( ( x e. A /\ ph ) -> ps ) |
|
| Assertion | ralimiaa | |- ( A. x e. A ph -> A. x e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimiaa.1 | |- ( ( x e. A /\ ph ) -> ps ) |
|
| 2 | 1 | ex | |- ( x e. A -> ( ph -> ps ) ) |
| 3 | 2 | ralimia | |- ( A. x e. A ph -> A. x e. A ps ) |