Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | ralin | |- ( A. x e. ( A i^i B ) ph <-> A. x e. A ( x e. B -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
2 | 1 | imbi1i | |- ( ( x e. ( A i^i B ) -> ph ) <-> ( ( x e. A /\ x e. B ) -> ph ) ) |
3 | impexp | |- ( ( ( x e. A /\ x e. B ) -> ph ) <-> ( x e. A -> ( x e. B -> ph ) ) ) |
|
4 | 2 3 | bitri | |- ( ( x e. ( A i^i B ) -> ph ) <-> ( x e. A -> ( x e. B -> ph ) ) ) |
5 | 4 | ralbii2 | |- ( A. x e. ( A i^i B ) ph <-> A. x e. A ( x e. B -> ph ) ) |