Metamath Proof Explorer


Theorem ralin

Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023)

Ref Expression
Assertion ralin
|- ( A. x e. ( A i^i B ) ph <-> A. x e. A ( x e. B -> ph ) )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
2 1 imbi1i
 |-  ( ( x e. ( A i^i B ) -> ph ) <-> ( ( x e. A /\ x e. B ) -> ph ) )
3 impexp
 |-  ( ( ( x e. A /\ x e. B ) -> ph ) <-> ( x e. A -> ( x e. B -> ph ) ) )
4 2 3 bitri
 |-  ( ( x e. ( A i^i B ) -> ph ) <-> ( x e. A -> ( x e. B -> ph ) ) )
5 4 ralbii2
 |-  ( A. x e. ( A i^i B ) ph <-> A. x e. A ( x e. B -> ph ) )