Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralinexa | |- ( A. x e. A ( ph -> -. ps ) <-> -. E. x e. A ( ph /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnan | |- ( ( ph -> -. ps ) <-> -. ( ph /\ ps ) ) |
|
| 2 | 1 | ralbii | |- ( A. x e. A ( ph -> -. ps ) <-> A. x e. A -. ( ph /\ ps ) ) |
| 3 | ralnex | |- ( A. x e. A -. ( ph /\ ps ) <-> -. E. x e. A ( ph /\ ps ) ) |
|
| 4 | 2 3 | bitri | |- ( A. x e. A ( ph -> -. ps ) <-> -. E. x e. A ( ph /\ ps ) ) |