Description: Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | raln | |- ( A. x e. A -. ph <-> A. x -. ( x e. A /\ ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral | |- ( A. x e. A -. ph <-> A. x ( x e. A -> -. ph ) ) |
|
2 | imnang | |- ( A. x ( x e. A -> -. ph ) <-> A. x -. ( x e. A /\ ph ) ) |
|
3 | 1 2 | bitri | |- ( A. x e. A -. ph <-> A. x -. ( x e. A /\ ph ) ) |