Metamath Proof Explorer


Theorem raln

Description: Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021)

Ref Expression
Assertion raln
|- ( A. x e. A -. ph <-> A. x -. ( x e. A /\ ph ) )

Proof

Step Hyp Ref Expression
1 df-ral
 |-  ( A. x e. A -. ph <-> A. x ( x e. A -> -. ph ) )
2 imnang
 |-  ( A. x ( x e. A -> -. ph ) <-> A. x -. ( x e. A /\ ph ) )
3 1 2 bitri
 |-  ( A. x e. A -. ph <-> A. x -. ( x e. A /\ ph ) )