Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007) (Revised by Mario Carneiro, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralpr.1 | |- A e. _V |
|
ralpr.2 | |- B e. _V |
||
ralpr.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
ralpr.4 | |- ( x = B -> ( ph <-> ch ) ) |
||
Assertion | ralpr | |- ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralpr.1 | |- A e. _V |
|
2 | ralpr.2 | |- B e. _V |
|
3 | ralpr.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | ralpr.4 | |- ( x = B -> ( ph <-> ch ) ) |
|
5 | 3 4 | ralprg | |- ( ( A e. _V /\ B e. _V ) -> ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) ) |
6 | 1 2 5 | mp2an | |- ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) |