Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007) (Revised by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralpr.1 | |- A e. _V |
|
| ralpr.2 | |- B e. _V |
||
| ralpr.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
| ralpr.4 | |- ( x = B -> ( ph <-> ch ) ) |
||
| Assertion | ralpr | |- ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralpr.1 | |- A e. _V |
|
| 2 | ralpr.2 | |- B e. _V |
|
| 3 | ralpr.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 4 | ralpr.4 | |- ( x = B -> ( ph <-> ch ) ) |
|
| 5 | 3 4 | ralprg | |- ( ( A e. _V /\ B e. _V ) -> ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) ) |
| 6 | 1 2 5 | mp2an | |- ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) |