Metamath Proof Explorer


Theorem ralrab

Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypothesis ralab.1
|- ( y = x -> ( ph <-> ps ) )
Assertion ralrab
|- ( A. x e. { y e. A | ph } ch <-> A. x e. A ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 ralab.1
 |-  ( y = x -> ( ph <-> ps ) )
2 1 elrab
 |-  ( x e. { y e. A | ph } <-> ( x e. A /\ ps ) )
3 2 imbi1i
 |-  ( ( x e. { y e. A | ph } -> ch ) <-> ( ( x e. A /\ ps ) -> ch ) )
4 impexp
 |-  ( ( ( x e. A /\ ps ) -> ch ) <-> ( x e. A -> ( ps -> ch ) ) )
5 3 4 bitri
 |-  ( ( x e. { y e. A | ph } -> ch ) <-> ( x e. A -> ( ps -> ch ) ) )
6 5 ralbii2
 |-  ( A. x e. { y e. A | ph } ch <-> A. x e. A ( ps -> ch ) )