Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
| Assertion | ralrab | |- ( A. x e. { y e. A | ph } ch <-> A. x e. A ( ps -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
| 2 | 1 | elrab | |- ( x e. { y e. A | ph } <-> ( x e. A /\ ps ) ) |
| 3 | 2 | imbi1i | |- ( ( x e. { y e. A | ph } -> ch ) <-> ( ( x e. A /\ ps ) -> ch ) ) |
| 4 | impexp | |- ( ( ( x e. A /\ ps ) -> ch ) <-> ( x e. A -> ( ps -> ch ) ) ) |
|
| 5 | 3 4 | bitri | |- ( ( x e. { y e. A | ph } -> ch ) <-> ( x e. A -> ( ps -> ch ) ) ) |
| 6 | 5 | ralbii2 | |- ( A. x e. { y e. A | ph } ch <-> A. x e. A ( ps -> ch ) ) |