Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
Assertion | ralrab | |- ( A. x e. { y e. A | ph } ch <-> A. x e. A ( ps -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | |- ( y = x -> ( ph <-> ps ) ) |
|
2 | 1 | elrab | |- ( x e. { y e. A | ph } <-> ( x e. A /\ ps ) ) |
3 | 2 | imbi1i | |- ( ( x e. { y e. A | ph } -> ch ) <-> ( ( x e. A /\ ps ) -> ch ) ) |
4 | impexp | |- ( ( ( x e. A /\ ps ) -> ch ) <-> ( x e. A -> ( ps -> ch ) ) ) |
|
5 | 3 4 | bitri | |- ( ( x e. { y e. A | ph } -> ch ) <-> ( x e. A -> ( ps -> ch ) ) ) |
6 | 5 | ralbii2 | |- ( A. x e. { y e. A | ph } ch <-> A. x e. A ( ps -> ch ) ) |