Metamath Proof Explorer


Theorem ralrimd

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004)

Ref Expression
Hypotheses ralrimd.1
|- F/ x ph
ralrimd.2
|- F/ x ps
ralrimd.3
|- ( ph -> ( ps -> ( x e. A -> ch ) ) )
Assertion ralrimd
|- ( ph -> ( ps -> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ralrimd.1
 |-  F/ x ph
2 ralrimd.2
 |-  F/ x ps
3 ralrimd.3
 |-  ( ph -> ( ps -> ( x e. A -> ch ) ) )
4 1 2 3 alrimd
 |-  ( ph -> ( ps -> A. x ( x e. A -> ch ) ) )
5 df-ral
 |-  ( A. x e. A ch <-> A. x ( x e. A -> ch ) )
6 4 5 syl6ibr
 |-  ( ph -> ( ps -> A. x e. A ch ) )