Metamath Proof Explorer


Theorem ralrimdvv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005)

Ref Expression
Hypothesis ralrimdvv.1
|- ( ph -> ( ps -> ( ( x e. A /\ y e. B ) -> ch ) ) )
Assertion ralrimdvv
|- ( ph -> ( ps -> A. x e. A A. y e. B ch ) )

Proof

Step Hyp Ref Expression
1 ralrimdvv.1
 |-  ( ph -> ( ps -> ( ( x e. A /\ y e. B ) -> ch ) ) )
2 1 imp
 |-  ( ( ph /\ ps ) -> ( ( x e. A /\ y e. B ) -> ch ) )
3 2 ralrimivv
 |-  ( ( ph /\ ps ) -> A. x e. A A. y e. B ch )
4 3 ex
 |-  ( ph -> ( ps -> A. x e. A A. y e. B ch ) )