Metamath Proof Explorer


Theorem ralrimdvva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008)

Ref Expression
Hypothesis ralrimdvva.1
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) )
Assertion ralrimdvva
|- ( ph -> ( ps -> A. x e. A A. y e. B ch ) )

Proof

Step Hyp Ref Expression
1 ralrimdvva.1
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) )
2 1 ex
 |-  ( ph -> ( ( x e. A /\ y e. B ) -> ( ps -> ch ) ) )
3 2 com23
 |-  ( ph -> ( ps -> ( ( x e. A /\ y e. B ) -> ch ) ) )
4 3 ralrimdvv
 |-  ( ph -> ( ps -> A. x e. A A. y e. B ch ) )