Metamath Proof Explorer


Theorem ralrimiva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Jan-2006)

Ref Expression
Hypothesis ralrimiva.1
|- ( ( ph /\ x e. A ) -> ps )
Assertion ralrimiva
|- ( ph -> A. x e. A ps )

Proof

Step Hyp Ref Expression
1 ralrimiva.1
 |-  ( ( ph /\ x e. A ) -> ps )
2 1 ex
 |-  ( ph -> ( x e. A -> ps ) )
3 2 ralrimiv
 |-  ( ph -> A. x e. A ps )