Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralrimivvva.1 | |- ( ( ph /\ ( x e. A /\ y e. B /\ z e. C ) ) -> ps ) |
|
| Assertion | ralrimivvva | |- ( ph -> A. x e. A A. y e. B A. z e. C ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivvva.1 | |- ( ( ph /\ ( x e. A /\ y e. B /\ z e. C ) ) -> ps ) |
|
| 2 | 1 | 3anassrs | |- ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ z e. C ) -> ps ) |
| 3 | 2 | ralrimiva | |- ( ( ( ph /\ x e. A ) /\ y e. B ) -> A. z e. C ps ) |
| 4 | 3 | ralrimiva | |- ( ( ph /\ x e. A ) -> A. y e. B A. z e. C ps ) |
| 5 | 4 | ralrimiva | |- ( ph -> A. x e. A A. y e. B A. z e. C ps ) |