| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexrn.1 |
|- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
| 2 |
|
fvexd |
|- ( ( F Fn A /\ y e. A ) -> ( F ` y ) e. _V ) |
| 3 |
|
fvelrnb |
|- ( F Fn A -> ( x e. ran F <-> E. y e. A ( F ` y ) = x ) ) |
| 4 |
|
eqcom |
|- ( ( F ` y ) = x <-> x = ( F ` y ) ) |
| 5 |
4
|
rexbii |
|- ( E. y e. A ( F ` y ) = x <-> E. y e. A x = ( F ` y ) ) |
| 6 |
3 5
|
bitrdi |
|- ( F Fn A -> ( x e. ran F <-> E. y e. A x = ( F ` y ) ) ) |
| 7 |
1
|
adantl |
|- ( ( F Fn A /\ x = ( F ` y ) ) -> ( ph <-> ps ) ) |
| 8 |
2 6 7
|
ralxfr2d |
|- ( F Fn A -> ( A. x e. ran F ph <-> A. y e. A ps ) ) |