Description: A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralrnmpt3.1 | |- F/ x ph |
|
ralrnmpt3.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
ralrnmpt3.3 | |- ( y = B -> ( ps <-> ch ) ) |
||
Assertion | ralrnmpt3 | |- ( ph -> ( A. y e. ran ( x e. A |-> B ) ps <-> A. x e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrnmpt3.1 | |- F/ x ph |
|
2 | ralrnmpt3.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
3 | ralrnmpt3.3 | |- ( y = B -> ( ps <-> ch ) ) |
|
4 | 1 2 | ralrimia | |- ( ph -> A. x e. A B e. V ) |
5 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
6 | 5 3 | ralrnmptw | |- ( A. x e. A B e. V -> ( A. y e. ran ( x e. A |-> B ) ps <-> A. x e. A ch ) ) |
7 | 4 6 | syl | |- ( ph -> ( A. y e. ran ( x e. A |-> B ) ps <-> A. x e. A ch ) ) |