Metamath Proof Explorer


Theorem ralrnmpt3

Description: A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses ralrnmpt3.1
|- F/ x ph
ralrnmpt3.2
|- ( ( ph /\ x e. A ) -> B e. V )
ralrnmpt3.3
|- ( y = B -> ( ps <-> ch ) )
Assertion ralrnmpt3
|- ( ph -> ( A. y e. ran ( x e. A |-> B ) ps <-> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ralrnmpt3.1
 |-  F/ x ph
2 ralrnmpt3.2
 |-  ( ( ph /\ x e. A ) -> B e. V )
3 ralrnmpt3.3
 |-  ( y = B -> ( ps <-> ch ) )
4 1 2 ralrimia
 |-  ( ph -> A. x e. A B e. V )
5 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
6 5 3 ralrnmptw
 |-  ( A. x e. A B e. V -> ( A. y e. ran ( x e. A |-> B ) ps <-> A. x e. A ch ) )
7 4 6 syl
 |-  ( ph -> ( A. y e. ran ( x e. A |-> B ) ps <-> A. x e. A ch ) )