Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralrp | |- ( A. x e. RR+ ph <-> A. x e. RR ( 0 < x -> ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrp | |- ( x e. RR+ <-> ( x e. RR /\ 0 < x ) ) | |
| 2 | 1 | imbi1i | |- ( ( x e. RR+ -> ph ) <-> ( ( x e. RR /\ 0 < x ) -> ph ) ) | 
| 3 | impexp | |- ( ( ( x e. RR /\ 0 < x ) -> ph ) <-> ( x e. RR -> ( 0 < x -> ph ) ) ) | |
| 4 | 2 3 | bitri | |- ( ( x e. RR+ -> ph ) <-> ( x e. RR -> ( 0 < x -> ph ) ) ) | 
| 5 | 4 | ralbii2 | |- ( A. x e. RR+ ph <-> A. x e. RR ( 0 < x -> ph ) ) |