Metamath Proof Explorer


Theorem ralsn

Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009)

Ref Expression
Hypotheses ralsn.1
|- A e. _V
ralsn.2
|- ( x = A -> ( ph <-> ps ) )
Assertion ralsn
|- ( A. x e. { A } ph <-> ps )

Proof

Step Hyp Ref Expression
1 ralsn.1
 |-  A e. _V
2 ralsn.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 ralsng
 |-  ( A e. _V -> ( A. x e. { A } ph <-> ps ) )
4 1 3 ax-mp
 |-  ( A. x e. { A } ph <-> ps )