Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralsn.1 | |- A e. _V |
|
ralsn.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | ralsn | |- ( A. x e. { A } ph <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | |- A e. _V |
|
2 | ralsn.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
3 | 2 | ralsng | |- ( A e. _V -> ( A. x e. { A } ph <-> ps ) ) |
4 | 1 3 | ax-mp | |- ( A. x e. { A } ph <-> ps ) |