Metamath Proof Explorer


Theorem ralsngOLD

Description: Obsolete version of ralsng as of 30-Sep-2024. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2015) (Proof shortened by AV, 7-Apr-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralsngOLD.1
|- ( x = A -> ( ph <-> ps ) )
Assertion ralsngOLD
|- ( A e. V -> ( A. x e. { A } ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 ralsngOLD.1
 |-  ( x = A -> ( ph <-> ps ) )
2 nfv
 |-  F/ x ps
3 2 1 ralsngf
 |-  ( A e. V -> ( A. x e. { A } ph <-> ps ) )