Metamath Proof Explorer


Theorem ralsngf

Description: Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by AV, 3-Apr-2023)

Ref Expression
Hypotheses rexsngf.1
|- F/ x ps
rexsngf.2
|- ( x = A -> ( ph <-> ps ) )
Assertion ralsngf
|- ( A e. V -> ( A. x e. { A } ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 rexsngf.1
 |-  F/ x ps
2 rexsngf.2
 |-  ( x = A -> ( ph <-> ps ) )
3 ralsnsg
 |-  ( A e. V -> ( A. x e. { A } ph <-> [. A / x ]. ph ) )
4 1 2 sbciegf
 |-  ( A e. V -> ( [. A / x ]. ph <-> ps ) )
5 3 4 bitrd
 |-  ( A e. V -> ( A. x e. { A } ph <-> ps ) )