Description: Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by AV, 3-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexsngf.1 | |- F/ x ps |
|
rexsngf.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | ralsngf | |- ( A e. V -> ( A. x e. { A } ph <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexsngf.1 | |- F/ x ps |
|
2 | rexsngf.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
3 | ralsnsg | |- ( A e. V -> ( A. x e. { A } ph <-> [. A / x ]. ph ) ) |
|
4 | 1 2 | sbciegf | |- ( A e. V -> ( [. A / x ]. ph <-> ps ) ) |
5 | 3 4 | bitrd | |- ( A e. V -> ( A. x e. { A } ph <-> ps ) ) |