Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by NM, 13-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raltp.1 | |- A e. _V |
|
raltp.2 | |- B e. _V |
||
raltp.3 | |- C e. _V |
||
raltp.4 | |- ( x = A -> ( ph <-> ps ) ) |
||
raltp.5 | |- ( x = B -> ( ph <-> ch ) ) |
||
raltp.6 | |- ( x = C -> ( ph <-> th ) ) |
||
Assertion | raltp | |- ( A. x e. { A , B , C } ph <-> ( ps /\ ch /\ th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raltp.1 | |- A e. _V |
|
2 | raltp.2 | |- B e. _V |
|
3 | raltp.3 | |- C e. _V |
|
4 | raltp.4 | |- ( x = A -> ( ph <-> ps ) ) |
|
5 | raltp.5 | |- ( x = B -> ( ph <-> ch ) ) |
|
6 | raltp.6 | |- ( x = C -> ( ph <-> th ) ) |
|
7 | 4 5 6 | raltpg | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( A. x e. { A , B , C } ph <-> ( ps /\ ch /\ th ) ) ) |
8 | 1 2 3 7 | mp3an | |- ( A. x e. { A , B , C } ph <-> ( ps /\ ch /\ th ) ) |