Step |
Hyp |
Ref |
Expression |
1 |
|
ralprd.1 |
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
2 |
|
ralprd.2 |
|- ( ( ph /\ x = B ) -> ( ps <-> th ) ) |
3 |
|
raltpd.3 |
|- ( ( ph /\ x = C ) -> ( ps <-> ta ) ) |
4 |
|
ralprd.a |
|- ( ph -> A e. V ) |
5 |
|
ralprd.b |
|- ( ph -> B e. W ) |
6 |
|
raltpd.c |
|- ( ph -> C e. X ) |
7 |
|
an3andi |
|- ( ( ph /\ ( ch /\ th /\ ta ) ) <-> ( ( ph /\ ch ) /\ ( ph /\ th ) /\ ( ph /\ ta ) ) ) |
8 |
7
|
a1i |
|- ( ph -> ( ( ph /\ ( ch /\ th /\ ta ) ) <-> ( ( ph /\ ch ) /\ ( ph /\ th ) /\ ( ph /\ ta ) ) ) ) |
9 |
1
|
expcom |
|- ( x = A -> ( ph -> ( ps <-> ch ) ) ) |
10 |
9
|
pm5.32d |
|- ( x = A -> ( ( ph /\ ps ) <-> ( ph /\ ch ) ) ) |
11 |
2
|
expcom |
|- ( x = B -> ( ph -> ( ps <-> th ) ) ) |
12 |
11
|
pm5.32d |
|- ( x = B -> ( ( ph /\ ps ) <-> ( ph /\ th ) ) ) |
13 |
3
|
expcom |
|- ( x = C -> ( ph -> ( ps <-> ta ) ) ) |
14 |
13
|
pm5.32d |
|- ( x = C -> ( ( ph /\ ps ) <-> ( ph /\ ta ) ) ) |
15 |
10 12 14
|
raltpg |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A. x e. { A , B , C } ( ph /\ ps ) <-> ( ( ph /\ ch ) /\ ( ph /\ th ) /\ ( ph /\ ta ) ) ) ) |
16 |
4 5 6 15
|
syl3anc |
|- ( ph -> ( A. x e. { A , B , C } ( ph /\ ps ) <-> ( ( ph /\ ch ) /\ ( ph /\ th ) /\ ( ph /\ ta ) ) ) ) |
17 |
4
|
tpnzd |
|- ( ph -> { A , B , C } =/= (/) ) |
18 |
|
r19.28zv |
|- ( { A , B , C } =/= (/) -> ( A. x e. { A , B , C } ( ph /\ ps ) <-> ( ph /\ A. x e. { A , B , C } ps ) ) ) |
19 |
17 18
|
syl |
|- ( ph -> ( A. x e. { A , B , C } ( ph /\ ps ) <-> ( ph /\ A. x e. { A , B , C } ps ) ) ) |
20 |
8 16 19
|
3bitr2d |
|- ( ph -> ( ( ph /\ ( ch /\ th /\ ta ) ) <-> ( ph /\ A. x e. { A , B , C } ps ) ) ) |
21 |
20
|
bianabs |
|- ( ph -> ( ( ph /\ ( ch /\ th /\ ta ) ) <-> A. x e. { A , B , C } ps ) ) |
22 |
21
|
bicomd |
|- ( ph -> ( A. x e. { A , B , C } ps <-> ( ph /\ ( ch /\ th /\ ta ) ) ) ) |
23 |
22
|
bianabs |
|- ( ph -> ( A. x e. { A , B , C } ps <-> ( ch /\ th /\ ta ) ) ) |