Metamath Proof Explorer


Theorem ralun

Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion ralun
|- ( ( A. x e. A ph /\ A. x e. B ph ) -> A. x e. ( A u. B ) ph )

Proof

Step Hyp Ref Expression
1 ralunb
 |-  ( A. x e. ( A u. B ) ph <-> ( A. x e. A ph /\ A. x e. B ph ) )
2 1 biimpri
 |-  ( ( A. x e. A ph /\ A. x e. B ph ) -> A. x e. ( A u. B ) ph )