Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralv | |- ( A. x e. _V ph <-> A. x ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ral | |- ( A. x e. _V ph <-> A. x ( x e. _V -> ph ) ) | |
| 2 | vex | |- x e. _V | |
| 3 | 2 | a1bi | |- ( ph <-> ( x e. _V -> ph ) ) | 
| 4 | 3 | albii | |- ( A. x ph <-> A. x ( x e. _V -> ph ) ) | 
| 5 | 1 4 | bitr4i | |- ( A. x e. _V ph <-> A. x ph ) |