Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralxfr.1 | |- ( y e. C -> A e. B ) |
|
ralxfr.2 | |- ( x e. B -> E. y e. C x = A ) |
||
ralxfr.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | ralxfr | |- ( A. x e. B ph <-> A. y e. C ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfr.1 | |- ( y e. C -> A e. B ) |
|
2 | ralxfr.2 | |- ( x e. B -> E. y e. C x = A ) |
|
3 | ralxfr.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | 1 | adantl | |- ( ( T. /\ y e. C ) -> A e. B ) |
5 | 2 | adantl | |- ( ( T. /\ x e. B ) -> E. y e. C x = A ) |
6 | 3 | adantl | |- ( ( T. /\ x = A ) -> ( ph <-> ps ) ) |
7 | 4 5 6 | ralxfrd | |- ( T. -> ( A. x e. B ph <-> A. y e. C ps ) ) |
8 | 7 | mptru | |- ( A. x e. B ph <-> A. y e. C ps ) |