Description: A version of ralxp with explicit substitution. (Contributed by Scott Fenton, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralxpes | |- ( A. x e. ( A X. B ) [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph <-> A. y e. A A. z e. B ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfsbc1v | |- F/ y [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph | |
| 2 | nfcv | |- F/_ z ( 1st ` x ) | |
| 3 | nfsbc1v | |- F/ z [. ( 2nd ` x ) / z ]. ph | |
| 4 | 2 3 | nfsbcw | |- F/ z [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph | 
| 5 | nfv | |- F/ x ph | |
| 6 | sbcopeq1a | |- ( x = <. y , z >. -> ( [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph <-> ph ) ) | |
| 7 | 1 4 5 6 | ralxpf | |- ( A. x e. ( A X. B ) [. ( 1st ` x ) / y ]. [. ( 2nd ` x ) / z ]. ph <-> A. y e. A A. z e. B ph ) |