| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralxpf.1 |  |-  F/ y ph | 
						
							| 2 |  | ralxpf.2 |  |-  F/ z ph | 
						
							| 3 |  | ralxpf.3 |  |-  F/ x ps | 
						
							| 4 |  | ralxpf.4 |  |-  ( x = <. y , z >. -> ( ph <-> ps ) ) | 
						
							| 5 |  | cbvralsvw |  |-  ( A. x e. ( A X. B ) ph <-> A. w e. ( A X. B ) [ w / x ] ph ) | 
						
							| 6 |  | cbvralsvw |  |-  ( A. z e. B [ u / y ] ps <-> A. v e. B [ v / z ] [ u / y ] ps ) | 
						
							| 7 | 6 | ralbii |  |-  ( A. u e. A A. z e. B [ u / y ] ps <-> A. u e. A A. v e. B [ v / z ] [ u / y ] ps ) | 
						
							| 8 |  | nfv |  |-  F/ u A. z e. B ps | 
						
							| 9 |  | nfcv |  |-  F/_ y B | 
						
							| 10 |  | nfs1v |  |-  F/ y [ u / y ] ps | 
						
							| 11 | 9 10 | nfralw |  |-  F/ y A. z e. B [ u / y ] ps | 
						
							| 12 |  | sbequ12 |  |-  ( y = u -> ( ps <-> [ u / y ] ps ) ) | 
						
							| 13 | 12 | ralbidv |  |-  ( y = u -> ( A. z e. B ps <-> A. z e. B [ u / y ] ps ) ) | 
						
							| 14 | 8 11 13 | cbvralw |  |-  ( A. y e. A A. z e. B ps <-> A. u e. A A. z e. B [ u / y ] ps ) | 
						
							| 15 |  | vex |  |-  u e. _V | 
						
							| 16 |  | vex |  |-  v e. _V | 
						
							| 17 | 15 16 | eqvinop |  |-  ( w = <. u , v >. <-> E. y E. z ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) ) | 
						
							| 18 | 1 | nfsbv |  |-  F/ y [ w / x ] ph | 
						
							| 19 | 10 | nfsbv |  |-  F/ y [ v / z ] [ u / y ] ps | 
						
							| 20 | 18 19 | nfbi |  |-  F/ y ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) | 
						
							| 21 | 2 | nfsbv |  |-  F/ z [ w / x ] ph | 
						
							| 22 |  | nfs1v |  |-  F/ z [ v / z ] [ u / y ] ps | 
						
							| 23 | 21 22 | nfbi |  |-  F/ z ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) | 
						
							| 24 | 3 4 | sbhypf |  |-  ( w = <. y , z >. -> ( [ w / x ] ph <-> ps ) ) | 
						
							| 25 |  | vex |  |-  y e. _V | 
						
							| 26 |  | vex |  |-  z e. _V | 
						
							| 27 | 25 26 | opth |  |-  ( <. y , z >. = <. u , v >. <-> ( y = u /\ z = v ) ) | 
						
							| 28 |  | sbequ12 |  |-  ( z = v -> ( [ u / y ] ps <-> [ v / z ] [ u / y ] ps ) ) | 
						
							| 29 | 12 28 | sylan9bb |  |-  ( ( y = u /\ z = v ) -> ( ps <-> [ v / z ] [ u / y ] ps ) ) | 
						
							| 30 | 27 29 | sylbi |  |-  ( <. y , z >. = <. u , v >. -> ( ps <-> [ v / z ] [ u / y ] ps ) ) | 
						
							| 31 | 24 30 | sylan9bb |  |-  ( ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) | 
						
							| 32 | 23 31 | exlimi |  |-  ( E. z ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) | 
						
							| 33 | 20 32 | exlimi |  |-  ( E. y E. z ( w = <. y , z >. /\ <. y , z >. = <. u , v >. ) -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) | 
						
							| 34 | 17 33 | sylbi |  |-  ( w = <. u , v >. -> ( [ w / x ] ph <-> [ v / z ] [ u / y ] ps ) ) | 
						
							| 35 | 34 | ralxp |  |-  ( A. w e. ( A X. B ) [ w / x ] ph <-> A. u e. A A. v e. B [ v / z ] [ u / y ] ps ) | 
						
							| 36 | 7 14 35 | 3bitr4ri |  |-  ( A. w e. ( A X. B ) [ w / x ] ph <-> A. y e. A A. z e. B ps ) | 
						
							| 37 | 5 36 | bitri |  |-  ( A. x e. ( A X. B ) ph <-> A. y e. A A. z e. B ps ) |