Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
2 |
|
ramval.t |
|- T = { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) } |
3 |
|
ne0i |
|- ( ( M Ramsey F ) e. T -> T =/= (/) ) |
4 |
1 2
|
ramcl2lem |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) = if ( T = (/) , +oo , inf ( T , RR , < ) ) ) |
5 |
|
ifnefalse |
|- ( T =/= (/) -> if ( T = (/) , +oo , inf ( T , RR , < ) ) = inf ( T , RR , < ) ) |
6 |
4 5
|
sylan9eq |
|- ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ T =/= (/) ) -> ( M Ramsey F ) = inf ( T , RR , < ) ) |
7 |
2
|
ssrab3 |
|- T C_ NN0 |
8 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
9 |
7 8
|
sseqtri |
|- T C_ ( ZZ>= ` 0 ) |
10 |
9
|
a1i |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> T C_ ( ZZ>= ` 0 ) ) |
11 |
|
infssuzcl |
|- ( ( T C_ ( ZZ>= ` 0 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T ) |
12 |
10 11
|
sylan |
|- ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T ) |
13 |
6 12
|
eqeltrd |
|- ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ T =/= (/) ) -> ( M Ramsey F ) e. T ) |
14 |
13
|
ex |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( T =/= (/) -> ( M Ramsey F ) e. T ) ) |
15 |
3 14
|
impbid2 |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( ( M Ramsey F ) e. T <-> T =/= (/) ) ) |