| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ramval.c |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
| 2 |
|
ramval.t |
|- T = { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) } |
| 3 |
1 2
|
ramcl2lem |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) = if ( T = (/) , +oo , inf ( T , RR , < ) ) ) |
| 4 |
3
|
eleq1d |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( ( M Ramsey F ) e. NN0 <-> if ( T = (/) , +oo , inf ( T , RR , < ) ) e. NN0 ) ) |
| 5 |
|
pnfnre |
|- +oo e/ RR |
| 6 |
5
|
neli |
|- -. +oo e. RR |
| 7 |
|
iftrue |
|- ( T = (/) -> if ( T = (/) , +oo , inf ( T , RR , < ) ) = +oo ) |
| 8 |
7
|
eleq1d |
|- ( T = (/) -> ( if ( T = (/) , +oo , inf ( T , RR , < ) ) e. NN0 <-> +oo e. NN0 ) ) |
| 9 |
|
nn0re |
|- ( +oo e. NN0 -> +oo e. RR ) |
| 10 |
8 9
|
biimtrdi |
|- ( T = (/) -> ( if ( T = (/) , +oo , inf ( T , RR , < ) ) e. NN0 -> +oo e. RR ) ) |
| 11 |
6 10
|
mtoi |
|- ( T = (/) -> -. if ( T = (/) , +oo , inf ( T , RR , < ) ) e. NN0 ) |
| 12 |
11
|
necon2ai |
|- ( if ( T = (/) , +oo , inf ( T , RR , < ) ) e. NN0 -> T =/= (/) ) |
| 13 |
4 12
|
biimtrdi |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( ( M Ramsey F ) e. NN0 -> T =/= (/) ) ) |
| 14 |
1 2
|
ramtcl |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( ( M Ramsey F ) e. T <-> T =/= (/) ) ) |
| 15 |
2
|
ssrab3 |
|- T C_ NN0 |
| 16 |
15
|
sseli |
|- ( ( M Ramsey F ) e. T -> ( M Ramsey F ) e. NN0 ) |
| 17 |
14 16
|
biimtrrdi |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( T =/= (/) -> ( M Ramsey F ) e. NN0 ) ) |
| 18 |
13 17
|
impbid |
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( ( M Ramsey F ) e. NN0 <-> T =/= (/) ) ) |