Metamath Proof Explorer


Theorem ramtub

Description: The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } )
ramval.t
|- T = { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) }
Assertion ramtub
|- ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ A e. T ) -> ( M Ramsey F ) <_ A )

Proof

Step Hyp Ref Expression
1 ramval.c
 |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } )
2 ramval.t
 |-  T = { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) }
3 1 2 ramcl2lem
 |-  ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) = if ( T = (/) , +oo , inf ( T , RR , < ) ) )
4 n0i
 |-  ( A e. T -> -. T = (/) )
5 4 iffalsed
 |-  ( A e. T -> if ( T = (/) , +oo , inf ( T , RR , < ) ) = inf ( T , RR , < ) )
6 3 5 sylan9eq
 |-  ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ A e. T ) -> ( M Ramsey F ) = inf ( T , RR , < ) )
7 2 ssrab3
 |-  T C_ NN0
8 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
9 7 8 sseqtri
 |-  T C_ ( ZZ>= ` 0 )
10 9 a1i
 |-  ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> T C_ ( ZZ>= ` 0 ) )
11 infssuzle
 |-  ( ( T C_ ( ZZ>= ` 0 ) /\ A e. T ) -> inf ( T , RR , < ) <_ A )
12 10 11 sylan
 |-  ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ A e. T ) -> inf ( T , RR , < ) <_ A )
13 6 12 eqbrtrd
 |-  ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ A e. T ) -> ( M Ramsey F ) <_ A )