| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ramub1.m |
|- ( ph -> M e. NN ) |
| 2 |
|
ramub1.r |
|- ( ph -> R e. Fin ) |
| 3 |
|
ramub1.f |
|- ( ph -> F : R --> NN ) |
| 4 |
|
ramub1.g |
|- G = ( x e. R |-> ( M Ramsey ( y e. R |-> if ( y = x , ( ( F ` x ) - 1 ) , ( F ` y ) ) ) ) ) |
| 5 |
|
ramub1.1 |
|- ( ph -> G : R --> NN0 ) |
| 6 |
|
ramub1.2 |
|- ( ph -> ( ( M - 1 ) Ramsey G ) e. NN0 ) |
| 7 |
|
eqid |
|- ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
| 8 |
1
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 9 |
|
nnssnn0 |
|- NN C_ NN0 |
| 10 |
|
fss |
|- ( ( F : R --> NN /\ NN C_ NN0 ) -> F : R --> NN0 ) |
| 11 |
3 9 10
|
sylancl |
|- ( ph -> F : R --> NN0 ) |
| 12 |
|
peano2nn0 |
|- ( ( ( M - 1 ) Ramsey G ) e. NN0 -> ( ( ( M - 1 ) Ramsey G ) + 1 ) e. NN0 ) |
| 13 |
6 12
|
syl |
|- ( ph -> ( ( ( M - 1 ) Ramsey G ) + 1 ) e. NN0 ) |
| 14 |
|
simprl |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) ) |
| 15 |
6
|
adantr |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( ( M - 1 ) Ramsey G ) e. NN0 ) |
| 16 |
|
nn0p1nn |
|- ( ( ( M - 1 ) Ramsey G ) e. NN0 -> ( ( ( M - 1 ) Ramsey G ) + 1 ) e. NN ) |
| 17 |
15 16
|
syl |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( ( ( M - 1 ) Ramsey G ) + 1 ) e. NN ) |
| 18 |
14 17
|
eqeltrd |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( # ` s ) e. NN ) |
| 19 |
18
|
nnnn0d |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( # ` s ) e. NN0 ) |
| 20 |
|
hashclb |
|- ( s e. _V -> ( s e. Fin <-> ( # ` s ) e. NN0 ) ) |
| 21 |
20
|
elv |
|- ( s e. Fin <-> ( # ` s ) e. NN0 ) |
| 22 |
19 21
|
sylibr |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> s e. Fin ) |
| 23 |
|
hashnncl |
|- ( s e. Fin -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) |
| 24 |
22 23
|
syl |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) |
| 25 |
18 24
|
mpbid |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> s =/= (/) ) |
| 26 |
|
n0 |
|- ( s =/= (/) <-> E. w w e. s ) |
| 27 |
25 26
|
sylib |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> E. w w e. s ) |
| 28 |
1
|
adantr |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> M e. NN ) |
| 29 |
2
|
adantr |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> R e. Fin ) |
| 30 |
3
|
adantr |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> F : R --> NN ) |
| 31 |
5
|
adantr |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> G : R --> NN0 ) |
| 32 |
6
|
adantr |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> ( ( M - 1 ) Ramsey G ) e. NN0 ) |
| 33 |
22
|
adantrr |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> s e. Fin ) |
| 34 |
|
simprll |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) ) |
| 35 |
|
simprlr |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) |
| 36 |
|
simprr |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> w e. s ) |
| 37 |
|
uneq1 |
|- ( v = u -> ( v u. { w } ) = ( u u. { w } ) ) |
| 38 |
37
|
fveq2d |
|- ( v = u -> ( f ` ( v u. { w } ) ) = ( f ` ( u u. { w } ) ) ) |
| 39 |
38
|
cbvmptv |
|- ( v e. ( ( s \ { w } ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) ( M - 1 ) ) |-> ( f ` ( v u. { w } ) ) ) = ( u e. ( ( s \ { w } ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) ( M - 1 ) ) |-> ( f ` ( u u. { w } ) ) ) |
| 40 |
28 29 30 4 31 32 7 33 34 35 36 39
|
ramub1lem2 |
|- ( ( ph /\ ( ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) /\ w e. s ) ) -> E. c e. R E. z e. ~P s ( ( F ` c ) <_ ( # ` z ) /\ ( z ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) |
| 41 |
40
|
expr |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( w e. s -> E. c e. R E. z e. ~P s ( ( F ` c ) <_ ( # ` z ) /\ ( z ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) ) |
| 42 |
41
|
exlimdv |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( E. w w e. s -> E. c e. R E. z e. ~P s ( ( F ` c ) <_ ( # ` z ) /\ ( z ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) ) |
| 43 |
27 42
|
mpd |
|- ( ( ph /\ ( ( # ` s ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> E. c e. R E. z e. ~P s ( ( F ` c ) <_ ( # ` z ) /\ ( z ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) |
| 44 |
7 8 2 11 13 43
|
ramub2 |
|- ( ph -> ( M Ramsey F ) <_ ( ( ( M - 1 ) Ramsey G ) + 1 ) ) |