Step |
Hyp |
Ref |
Expression |
1 |
|
ramub1.m |
|- ( ph -> M e. NN ) |
2 |
|
ramub1.r |
|- ( ph -> R e. Fin ) |
3 |
|
ramub1.f |
|- ( ph -> F : R --> NN ) |
4 |
|
ramub1.g |
|- G = ( x e. R |-> ( M Ramsey ( y e. R |-> if ( y = x , ( ( F ` x ) - 1 ) , ( F ` y ) ) ) ) ) |
5 |
|
ramub1.1 |
|- ( ph -> G : R --> NN0 ) |
6 |
|
ramub1.2 |
|- ( ph -> ( ( M - 1 ) Ramsey G ) e. NN0 ) |
7 |
|
ramub1.3 |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
8 |
|
ramub1.4 |
|- ( ph -> S e. Fin ) |
9 |
|
ramub1.5 |
|- ( ph -> ( # ` S ) = ( ( ( M - 1 ) Ramsey G ) + 1 ) ) |
10 |
|
ramub1.6 |
|- ( ph -> K : ( S C M ) --> R ) |
11 |
|
ramub1.x |
|- ( ph -> X e. S ) |
12 |
|
ramub1.h |
|- H = ( u e. ( ( S \ { X } ) C ( M - 1 ) ) |-> ( K ` ( u u. { X } ) ) ) |
13 |
|
ramub1.d |
|- ( ph -> D e. R ) |
14 |
|
ramub1.w |
|- ( ph -> W C_ ( S \ { X } ) ) |
15 |
|
ramub1.7 |
|- ( ph -> ( G ` D ) <_ ( # ` W ) ) |
16 |
|
ramub1.8 |
|- ( ph -> ( W C ( M - 1 ) ) C_ ( `' H " { D } ) ) |
17 |
|
ramub1.e |
|- ( ph -> E e. R ) |
18 |
|
ramub1.v |
|- ( ph -> V C_ W ) |
19 |
|
ramub1.9 |
|- ( ph -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) <_ ( # ` V ) ) |
20 |
|
ramub1.s |
|- ( ph -> ( V C M ) C_ ( `' K " { E } ) ) |
21 |
18 14
|
sstrd |
|- ( ph -> V C_ ( S \ { X } ) ) |
22 |
21
|
difss2d |
|- ( ph -> V C_ S ) |
23 |
11
|
snssd |
|- ( ph -> { X } C_ S ) |
24 |
22 23
|
unssd |
|- ( ph -> ( V u. { X } ) C_ S ) |
25 |
8 24
|
sselpwd |
|- ( ph -> ( V u. { X } ) e. ~P S ) |
26 |
25
|
adantr |
|- ( ( ph /\ E = D ) -> ( V u. { X } ) e. ~P S ) |
27 |
|
iftrue |
|- ( E = D -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) = ( ( F ` D ) - 1 ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ E = D ) -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) = ( ( F ` D ) - 1 ) ) |
29 |
19
|
adantr |
|- ( ( ph /\ E = D ) -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) <_ ( # ` V ) ) |
30 |
28 29
|
eqbrtrrd |
|- ( ( ph /\ E = D ) -> ( ( F ` D ) - 1 ) <_ ( # ` V ) ) |
31 |
3 13
|
ffvelrnd |
|- ( ph -> ( F ` D ) e. NN ) |
32 |
31
|
adantr |
|- ( ( ph /\ E = D ) -> ( F ` D ) e. NN ) |
33 |
32
|
nnred |
|- ( ( ph /\ E = D ) -> ( F ` D ) e. RR ) |
34 |
|
1red |
|- ( ( ph /\ E = D ) -> 1 e. RR ) |
35 |
8 22
|
ssfid |
|- ( ph -> V e. Fin ) |
36 |
|
hashcl |
|- ( V e. Fin -> ( # ` V ) e. NN0 ) |
37 |
|
nn0re |
|- ( ( # ` V ) e. NN0 -> ( # ` V ) e. RR ) |
38 |
35 36 37
|
3syl |
|- ( ph -> ( # ` V ) e. RR ) |
39 |
38
|
adantr |
|- ( ( ph /\ E = D ) -> ( # ` V ) e. RR ) |
40 |
33 34 39
|
lesubaddd |
|- ( ( ph /\ E = D ) -> ( ( ( F ` D ) - 1 ) <_ ( # ` V ) <-> ( F ` D ) <_ ( ( # ` V ) + 1 ) ) ) |
41 |
30 40
|
mpbid |
|- ( ( ph /\ E = D ) -> ( F ` D ) <_ ( ( # ` V ) + 1 ) ) |
42 |
|
fveq2 |
|- ( E = D -> ( F ` E ) = ( F ` D ) ) |
43 |
|
snidg |
|- ( X e. S -> X e. { X } ) |
44 |
11 43
|
syl |
|- ( ph -> X e. { X } ) |
45 |
21
|
sseld |
|- ( ph -> ( X e. V -> X e. ( S \ { X } ) ) ) |
46 |
|
eldifn |
|- ( X e. ( S \ { X } ) -> -. X e. { X } ) |
47 |
45 46
|
syl6 |
|- ( ph -> ( X e. V -> -. X e. { X } ) ) |
48 |
44 47
|
mt2d |
|- ( ph -> -. X e. V ) |
49 |
|
hashunsng |
|- ( X e. S -> ( ( V e. Fin /\ -. X e. V ) -> ( # ` ( V u. { X } ) ) = ( ( # ` V ) + 1 ) ) ) |
50 |
11 49
|
syl |
|- ( ph -> ( ( V e. Fin /\ -. X e. V ) -> ( # ` ( V u. { X } ) ) = ( ( # ` V ) + 1 ) ) ) |
51 |
35 48 50
|
mp2and |
|- ( ph -> ( # ` ( V u. { X } ) ) = ( ( # ` V ) + 1 ) ) |
52 |
42 51
|
breqan12rd |
|- ( ( ph /\ E = D ) -> ( ( F ` E ) <_ ( # ` ( V u. { X } ) ) <-> ( F ` D ) <_ ( ( # ` V ) + 1 ) ) ) |
53 |
41 52
|
mpbird |
|- ( ( ph /\ E = D ) -> ( F ` E ) <_ ( # ` ( V u. { X } ) ) ) |
54 |
|
snfi |
|- { X } e. Fin |
55 |
|
unfi |
|- ( ( V e. Fin /\ { X } e. Fin ) -> ( V u. { X } ) e. Fin ) |
56 |
35 54 55
|
sylancl |
|- ( ph -> ( V u. { X } ) e. Fin ) |
57 |
1
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
58 |
7
|
hashbcval |
|- ( ( ( V u. { X } ) e. Fin /\ M e. NN0 ) -> ( ( V u. { X } ) C M ) = { x e. ~P ( V u. { X } ) | ( # ` x ) = M } ) |
59 |
56 57 58
|
syl2anc |
|- ( ph -> ( ( V u. { X } ) C M ) = { x e. ~P ( V u. { X } ) | ( # ` x ) = M } ) |
60 |
59
|
adantr |
|- ( ( ph /\ E = D ) -> ( ( V u. { X } ) C M ) = { x e. ~P ( V u. { X } ) | ( # ` x ) = M } ) |
61 |
|
simpl1l |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> ph ) |
62 |
7
|
hashbcval |
|- ( ( V e. Fin /\ M e. NN0 ) -> ( V C M ) = { x e. ~P V | ( # ` x ) = M } ) |
63 |
35 57 62
|
syl2anc |
|- ( ph -> ( V C M ) = { x e. ~P V | ( # ` x ) = M } ) |
64 |
63 20
|
eqsstrrd |
|- ( ph -> { x e. ~P V | ( # ` x ) = M } C_ ( `' K " { E } ) ) |
65 |
61 64
|
syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> { x e. ~P V | ( # ` x ) = M } C_ ( `' K " { E } ) ) |
66 |
|
simpr |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> x e. ~P V ) |
67 |
|
simpl3 |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> ( # ` x ) = M ) |
68 |
|
rabid |
|- ( x e. { x e. ~P V | ( # ` x ) = M } <-> ( x e. ~P V /\ ( # ` x ) = M ) ) |
69 |
66 67 68
|
sylanbrc |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> x e. { x e. ~P V | ( # ` x ) = M } ) |
70 |
65 69
|
sseldd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ x e. ~P V ) -> x e. ( `' K " { E } ) ) |
71 |
|
simpl2 |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ~P ( V u. { X } ) ) |
72 |
71
|
elpwid |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x C_ ( V u. { X } ) ) |
73 |
|
simpl1l |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ph ) |
74 |
73 24
|
syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( V u. { X } ) C_ S ) |
75 |
72 74
|
sstrd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x C_ S ) |
76 |
|
vex |
|- x e. _V |
77 |
76
|
elpw |
|- ( x e. ~P S <-> x C_ S ) |
78 |
75 77
|
sylibr |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ~P S ) |
79 |
|
simpl3 |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` x ) = M ) |
80 |
|
rabid |
|- ( x e. { x e. ~P S | ( # ` x ) = M } <-> ( x e. ~P S /\ ( # ` x ) = M ) ) |
81 |
78 79 80
|
sylanbrc |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. { x e. ~P S | ( # ` x ) = M } ) |
82 |
7
|
hashbcval |
|- ( ( S e. Fin /\ M e. NN0 ) -> ( S C M ) = { x e. ~P S | ( # ` x ) = M } ) |
83 |
8 57 82
|
syl2anc |
|- ( ph -> ( S C M ) = { x e. ~P S | ( # ` x ) = M } ) |
84 |
73 83
|
syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( S C M ) = { x e. ~P S | ( # ` x ) = M } ) |
85 |
81 84
|
eleqtrrd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ( S C M ) ) |
86 |
14
|
difss2d |
|- ( ph -> W C_ S ) |
87 |
8 86
|
ssfid |
|- ( ph -> W e. Fin ) |
88 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
89 |
1 88
|
syl |
|- ( ph -> ( M - 1 ) e. NN0 ) |
90 |
7
|
hashbcval |
|- ( ( W e. Fin /\ ( M - 1 ) e. NN0 ) -> ( W C ( M - 1 ) ) = { u e. ~P W | ( # ` u ) = ( M - 1 ) } ) |
91 |
87 89 90
|
syl2anc |
|- ( ph -> ( W C ( M - 1 ) ) = { u e. ~P W | ( # ` u ) = ( M - 1 ) } ) |
92 |
91 16
|
eqsstrrd |
|- ( ph -> { u e. ~P W | ( # ` u ) = ( M - 1 ) } C_ ( `' H " { D } ) ) |
93 |
73 92
|
syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> { u e. ~P W | ( # ` u ) = ( M - 1 ) } C_ ( `' H " { D } ) ) |
94 |
|
fveqeq2 |
|- ( u = ( x \ { X } ) -> ( ( # ` u ) = ( M - 1 ) <-> ( # ` ( x \ { X } ) ) = ( M - 1 ) ) ) |
95 |
|
uncom |
|- ( V u. { X } ) = ( { X } u. V ) |
96 |
72 95
|
sseqtrdi |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x C_ ( { X } u. V ) ) |
97 |
|
ssundif |
|- ( x C_ ( { X } u. V ) <-> ( x \ { X } ) C_ V ) |
98 |
96 97
|
sylib |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) C_ V ) |
99 |
73 18
|
syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> V C_ W ) |
100 |
98 99
|
sstrd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) C_ W ) |
101 |
76
|
difexi |
|- ( x \ { X } ) e. _V |
102 |
101
|
elpw |
|- ( ( x \ { X } ) e. ~P W <-> ( x \ { X } ) C_ W ) |
103 |
100 102
|
sylibr |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. ~P W ) |
104 |
73 8
|
syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> S e. Fin ) |
105 |
104 75
|
ssfid |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. Fin ) |
106 |
|
diffi |
|- ( x e. Fin -> ( x \ { X } ) e. Fin ) |
107 |
105 106
|
syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. Fin ) |
108 |
|
hashcl |
|- ( ( x \ { X } ) e. Fin -> ( # ` ( x \ { X } ) ) e. NN0 ) |
109 |
|
nn0cn |
|- ( ( # ` ( x \ { X } ) ) e. NN0 -> ( # ` ( x \ { X } ) ) e. CC ) |
110 |
107 108 109
|
3syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` ( x \ { X } ) ) e. CC ) |
111 |
|
ax-1cn |
|- 1 e. CC |
112 |
|
pncan |
|- ( ( ( # ` ( x \ { X } ) ) e. CC /\ 1 e. CC ) -> ( ( ( # ` ( x \ { X } ) ) + 1 ) - 1 ) = ( # ` ( x \ { X } ) ) ) |
113 |
110 111 112
|
sylancl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( ( ( # ` ( x \ { X } ) ) + 1 ) - 1 ) = ( # ` ( x \ { X } ) ) ) |
114 |
|
neldifsnd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> -. X e. ( x \ { X } ) ) |
115 |
|
hashunsng |
|- ( X e. S -> ( ( ( x \ { X } ) e. Fin /\ -. X e. ( x \ { X } ) ) -> ( # ` ( ( x \ { X } ) u. { X } ) ) = ( ( # ` ( x \ { X } ) ) + 1 ) ) ) |
116 |
73 11 115
|
3syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( ( ( x \ { X } ) e. Fin /\ -. X e. ( x \ { X } ) ) -> ( # ` ( ( x \ { X } ) u. { X } ) ) = ( ( # ` ( x \ { X } ) ) + 1 ) ) ) |
117 |
107 114 116
|
mp2and |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` ( ( x \ { X } ) u. { X } ) ) = ( ( # ` ( x \ { X } ) ) + 1 ) ) |
118 |
|
undif1 |
|- ( ( x \ { X } ) u. { X } ) = ( x u. { X } ) |
119 |
|
simpr |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> -. x e. ~P V ) |
120 |
71 119
|
eldifd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ( ~P ( V u. { X } ) \ ~P V ) ) |
121 |
|
elpwunsn |
|- ( x e. ( ~P ( V u. { X } ) \ ~P V ) -> X e. x ) |
122 |
120 121
|
syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> X e. x ) |
123 |
122
|
snssd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> { X } C_ x ) |
124 |
|
ssequn2 |
|- ( { X } C_ x <-> ( x u. { X } ) = x ) |
125 |
123 124
|
sylib |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x u. { X } ) = x ) |
126 |
118 125
|
eqtr2id |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x = ( ( x \ { X } ) u. { X } ) ) |
127 |
126
|
fveq2d |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` x ) = ( # ` ( ( x \ { X } ) u. { X } ) ) ) |
128 |
127 79
|
eqtr3d |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` ( ( x \ { X } ) u. { X } ) ) = M ) |
129 |
117 128
|
eqtr3d |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( ( # ` ( x \ { X } ) ) + 1 ) = M ) |
130 |
129
|
oveq1d |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( ( ( # ` ( x \ { X } ) ) + 1 ) - 1 ) = ( M - 1 ) ) |
131 |
113 130
|
eqtr3d |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( # ` ( x \ { X } ) ) = ( M - 1 ) ) |
132 |
94 103 131
|
elrabd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. { u e. ~P W | ( # ` u ) = ( M - 1 ) } ) |
133 |
93 132
|
sseldd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. ( `' H " { D } ) ) |
134 |
12
|
mptiniseg |
|- ( D e. R -> ( `' H " { D } ) = { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } ) |
135 |
73 13 134
|
3syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( `' H " { D } ) = { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } ) |
136 |
133 135
|
eleqtrd |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x \ { X } ) e. { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } ) |
137 |
|
uneq1 |
|- ( u = ( x \ { X } ) -> ( u u. { X } ) = ( ( x \ { X } ) u. { X } ) ) |
138 |
137
|
fveqeq2d |
|- ( u = ( x \ { X } ) -> ( ( K ` ( u u. { X } ) ) = D <-> ( K ` ( ( x \ { X } ) u. { X } ) ) = D ) ) |
139 |
138
|
elrab |
|- ( ( x \ { X } ) e. { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } <-> ( ( x \ { X } ) e. ( ( S \ { X } ) C ( M - 1 ) ) /\ ( K ` ( ( x \ { X } ) u. { X } ) ) = D ) ) |
140 |
139
|
simprbi |
|- ( ( x \ { X } ) e. { u e. ( ( S \ { X } ) C ( M - 1 ) ) | ( K ` ( u u. { X } ) ) = D } -> ( K ` ( ( x \ { X } ) u. { X } ) ) = D ) |
141 |
136 140
|
syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( K ` ( ( x \ { X } ) u. { X } ) ) = D ) |
142 |
126
|
fveq2d |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( K ` x ) = ( K ` ( ( x \ { X } ) u. { X } ) ) ) |
143 |
|
simpl1r |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> E = D ) |
144 |
141 142 143
|
3eqtr4d |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( K ` x ) = E ) |
145 |
10
|
ffnd |
|- ( ph -> K Fn ( S C M ) ) |
146 |
|
fniniseg |
|- ( K Fn ( S C M ) -> ( x e. ( `' K " { E } ) <-> ( x e. ( S C M ) /\ ( K ` x ) = E ) ) ) |
147 |
73 145 146
|
3syl |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> ( x e. ( `' K " { E } ) <-> ( x e. ( S C M ) /\ ( K ` x ) = E ) ) ) |
148 |
85 144 147
|
mpbir2and |
|- ( ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) /\ -. x e. ~P V ) -> x e. ( `' K " { E } ) ) |
149 |
70 148
|
pm2.61dan |
|- ( ( ( ph /\ E = D ) /\ x e. ~P ( V u. { X } ) /\ ( # ` x ) = M ) -> x e. ( `' K " { E } ) ) |
150 |
149
|
rabssdv |
|- ( ( ph /\ E = D ) -> { x e. ~P ( V u. { X } ) | ( # ` x ) = M } C_ ( `' K " { E } ) ) |
151 |
60 150
|
eqsstrd |
|- ( ( ph /\ E = D ) -> ( ( V u. { X } ) C M ) C_ ( `' K " { E } ) ) |
152 |
|
fveq2 |
|- ( z = ( V u. { X } ) -> ( # ` z ) = ( # ` ( V u. { X } ) ) ) |
153 |
152
|
breq2d |
|- ( z = ( V u. { X } ) -> ( ( F ` E ) <_ ( # ` z ) <-> ( F ` E ) <_ ( # ` ( V u. { X } ) ) ) ) |
154 |
|
oveq1 |
|- ( z = ( V u. { X } ) -> ( z C M ) = ( ( V u. { X } ) C M ) ) |
155 |
154
|
sseq1d |
|- ( z = ( V u. { X } ) -> ( ( z C M ) C_ ( `' K " { E } ) <-> ( ( V u. { X } ) C M ) C_ ( `' K " { E } ) ) ) |
156 |
153 155
|
anbi12d |
|- ( z = ( V u. { X } ) -> ( ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) <-> ( ( F ` E ) <_ ( # ` ( V u. { X } ) ) /\ ( ( V u. { X } ) C M ) C_ ( `' K " { E } ) ) ) ) |
157 |
156
|
rspcev |
|- ( ( ( V u. { X } ) e. ~P S /\ ( ( F ` E ) <_ ( # ` ( V u. { X } ) ) /\ ( ( V u. { X } ) C M ) C_ ( `' K " { E } ) ) ) -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) |
158 |
26 53 151 157
|
syl12anc |
|- ( ( ph /\ E = D ) -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) |
159 |
8 22
|
sselpwd |
|- ( ph -> V e. ~P S ) |
160 |
159
|
adantr |
|- ( ( ph /\ E =/= D ) -> V e. ~P S ) |
161 |
|
ifnefalse |
|- ( E =/= D -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) = ( F ` E ) ) |
162 |
161
|
adantl |
|- ( ( ph /\ E =/= D ) -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) = ( F ` E ) ) |
163 |
19
|
adantr |
|- ( ( ph /\ E =/= D ) -> if ( E = D , ( ( F ` D ) - 1 ) , ( F ` E ) ) <_ ( # ` V ) ) |
164 |
162 163
|
eqbrtrrd |
|- ( ( ph /\ E =/= D ) -> ( F ` E ) <_ ( # ` V ) ) |
165 |
20
|
adantr |
|- ( ( ph /\ E =/= D ) -> ( V C M ) C_ ( `' K " { E } ) ) |
166 |
|
fveq2 |
|- ( z = V -> ( # ` z ) = ( # ` V ) ) |
167 |
166
|
breq2d |
|- ( z = V -> ( ( F ` E ) <_ ( # ` z ) <-> ( F ` E ) <_ ( # ` V ) ) ) |
168 |
|
oveq1 |
|- ( z = V -> ( z C M ) = ( V C M ) ) |
169 |
168
|
sseq1d |
|- ( z = V -> ( ( z C M ) C_ ( `' K " { E } ) <-> ( V C M ) C_ ( `' K " { E } ) ) ) |
170 |
167 169
|
anbi12d |
|- ( z = V -> ( ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) <-> ( ( F ` E ) <_ ( # ` V ) /\ ( V C M ) C_ ( `' K " { E } ) ) ) ) |
171 |
170
|
rspcev |
|- ( ( V e. ~P S /\ ( ( F ` E ) <_ ( # ` V ) /\ ( V C M ) C_ ( `' K " { E } ) ) ) -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) |
172 |
160 164 165 171
|
syl12anc |
|- ( ( ph /\ E =/= D ) -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) |
173 |
158 172
|
pm2.61dane |
|- ( ph -> E. z e. ~P S ( ( F ` E ) <_ ( # ` z ) /\ ( z C M ) C_ ( `' K " { E } ) ) ) |