| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rami.c |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
| 2 |
|
rami.m |
|- ( ph -> M e. NN0 ) |
| 3 |
|
rami.r |
|- ( ph -> R e. V ) |
| 4 |
|
rami.f |
|- ( ph -> F : R --> NN0 ) |
| 5 |
|
ramub2.n |
|- ( ph -> N e. NN0 ) |
| 6 |
|
ramub2.i |
|- ( ( ph /\ ( ( # ` s ) = N /\ f : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) |
| 7 |
5
|
adantr |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> N e. NN0 ) |
| 8 |
|
hashfz1 |
|- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
| 9 |
7 8
|
syl |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( # ` ( 1 ... N ) ) = N ) |
| 10 |
|
simprl |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> N <_ ( # ` t ) ) |
| 11 |
9 10
|
eqbrtrd |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( # ` ( 1 ... N ) ) <_ ( # ` t ) ) |
| 12 |
|
fzfid |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( 1 ... N ) e. Fin ) |
| 13 |
|
vex |
|- t e. _V |
| 14 |
|
hashdom |
|- ( ( ( 1 ... N ) e. Fin /\ t e. _V ) -> ( ( # ` ( 1 ... N ) ) <_ ( # ` t ) <-> ( 1 ... N ) ~<_ t ) ) |
| 15 |
12 13 14
|
sylancl |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( ( # ` ( 1 ... N ) ) <_ ( # ` t ) <-> ( 1 ... N ) ~<_ t ) ) |
| 16 |
11 15
|
mpbid |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( 1 ... N ) ~<_ t ) |
| 17 |
13
|
domen |
|- ( ( 1 ... N ) ~<_ t <-> E. s ( ( 1 ... N ) ~~ s /\ s C_ t ) ) |
| 18 |
16 17
|
sylib |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> E. s ( ( 1 ... N ) ~~ s /\ s C_ t ) ) |
| 19 |
|
simpll |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ph ) |
| 20 |
|
ensym |
|- ( ( 1 ... N ) ~~ s -> s ~~ ( 1 ... N ) ) |
| 21 |
20
|
ad2antrl |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> s ~~ ( 1 ... N ) ) |
| 22 |
|
hasheni |
|- ( s ~~ ( 1 ... N ) -> ( # ` s ) = ( # ` ( 1 ... N ) ) ) |
| 23 |
21 22
|
syl |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( # ` s ) = ( # ` ( 1 ... N ) ) ) |
| 24 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> N e. NN0 ) |
| 25 |
24 8
|
syl |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( # ` ( 1 ... N ) ) = N ) |
| 26 |
23 25
|
eqtrd |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( # ` s ) = N ) |
| 27 |
|
simplrr |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> g : ( t C M ) --> R ) |
| 28 |
|
simprr |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> s C_ t ) |
| 29 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> M e. NN0 ) |
| 30 |
1
|
hashbcss |
|- ( ( t e. _V /\ s C_ t /\ M e. NN0 ) -> ( s C M ) C_ ( t C M ) ) |
| 31 |
13 28 29 30
|
mp3an2i |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( s C M ) C_ ( t C M ) ) |
| 32 |
27 31
|
fssresd |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( g |` ( s C M ) ) : ( s C M ) --> R ) |
| 33 |
|
vex |
|- g e. _V |
| 34 |
33
|
resex |
|- ( g |` ( s C M ) ) e. _V |
| 35 |
|
feq1 |
|- ( f = ( g |` ( s C M ) ) -> ( f : ( s C M ) --> R <-> ( g |` ( s C M ) ) : ( s C M ) --> R ) ) |
| 36 |
35
|
anbi2d |
|- ( f = ( g |` ( s C M ) ) -> ( ( ( # ` s ) = N /\ f : ( s C M ) --> R ) <-> ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) ) |
| 37 |
36
|
anbi2d |
|- ( f = ( g |` ( s C M ) ) -> ( ( ph /\ ( ( # ` s ) = N /\ f : ( s C M ) --> R ) ) <-> ( ph /\ ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) ) ) |
| 38 |
|
cnveq |
|- ( f = ( g |` ( s C M ) ) -> `' f = `' ( g |` ( s C M ) ) ) |
| 39 |
38
|
imaeq1d |
|- ( f = ( g |` ( s C M ) ) -> ( `' f " { c } ) = ( `' ( g |` ( s C M ) ) " { c } ) ) |
| 40 |
|
cnvresima |
|- ( `' ( g |` ( s C M ) ) " { c } ) = ( ( `' g " { c } ) i^i ( s C M ) ) |
| 41 |
39 40
|
eqtrdi |
|- ( f = ( g |` ( s C M ) ) -> ( `' f " { c } ) = ( ( `' g " { c } ) i^i ( s C M ) ) ) |
| 42 |
41
|
sseq2d |
|- ( f = ( g |` ( s C M ) ) -> ( ( x C M ) C_ ( `' f " { c } ) <-> ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) |
| 43 |
42
|
anbi2d |
|- ( f = ( g |` ( s C M ) ) -> ( ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) <-> ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) ) |
| 44 |
43
|
2rexbidv |
|- ( f = ( g |` ( s C M ) ) -> ( E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) <-> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) ) |
| 45 |
37 44
|
imbi12d |
|- ( f = ( g |` ( s C M ) ) -> ( ( ( ph /\ ( ( # ` s ) = N /\ f : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) <-> ( ( ph /\ ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) ) ) |
| 46 |
34 45 6
|
vtocl |
|- ( ( ph /\ ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) |
| 47 |
19 26 32 46
|
syl12anc |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) |
| 48 |
|
sstr |
|- ( ( x C_ s /\ s C_ t ) -> x C_ t ) |
| 49 |
48
|
expcom |
|- ( s C_ t -> ( x C_ s -> x C_ t ) ) |
| 50 |
49
|
ad2antll |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( x C_ s -> x C_ t ) ) |
| 51 |
|
velpw |
|- ( x e. ~P s <-> x C_ s ) |
| 52 |
|
velpw |
|- ( x e. ~P t <-> x C_ t ) |
| 53 |
50 51 52
|
3imtr4g |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( x e. ~P s -> x e. ~P t ) ) |
| 54 |
|
id |
|- ( ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) -> ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) |
| 55 |
|
inss1 |
|- ( ( `' g " { c } ) i^i ( s C M ) ) C_ ( `' g " { c } ) |
| 56 |
54 55
|
sstrdi |
|- ( ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) -> ( x C M ) C_ ( `' g " { c } ) ) |
| 57 |
56
|
a1i |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) -> ( x C M ) C_ ( `' g " { c } ) ) ) |
| 58 |
57
|
anim2d |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) -> ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) |
| 59 |
53 58
|
anim12d |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( ( x e. ~P s /\ ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) -> ( x e. ~P t /\ ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) ) |
| 60 |
59
|
reximdv2 |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) -> E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) |
| 61 |
60
|
reximdv |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) -> E. c e. R E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) |
| 62 |
47 61
|
mpd |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> E. c e. R E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) |
| 63 |
18 62
|
exlimddv |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> E. c e. R E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) |
| 64 |
1 2 3 4 5 63
|
ramub |
|- ( ph -> ( M Ramsey F ) <_ N ) |