Step |
Hyp |
Ref |
Expression |
1 |
|
rami.c |
|- C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
2 |
|
rami.m |
|- ( ph -> M e. NN0 ) |
3 |
|
rami.r |
|- ( ph -> R e. V ) |
4 |
|
rami.f |
|- ( ph -> F : R --> NN0 ) |
5 |
|
ramub2.n |
|- ( ph -> N e. NN0 ) |
6 |
|
ramub2.i |
|- ( ( ph /\ ( ( # ` s ) = N /\ f : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) |
7 |
5
|
adantr |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> N e. NN0 ) |
8 |
|
hashfz1 |
|- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
9 |
7 8
|
syl |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( # ` ( 1 ... N ) ) = N ) |
10 |
|
simprl |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> N <_ ( # ` t ) ) |
11 |
9 10
|
eqbrtrd |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( # ` ( 1 ... N ) ) <_ ( # ` t ) ) |
12 |
|
fzfid |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( 1 ... N ) e. Fin ) |
13 |
|
vex |
|- t e. _V |
14 |
|
hashdom |
|- ( ( ( 1 ... N ) e. Fin /\ t e. _V ) -> ( ( # ` ( 1 ... N ) ) <_ ( # ` t ) <-> ( 1 ... N ) ~<_ t ) ) |
15 |
12 13 14
|
sylancl |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( ( # ` ( 1 ... N ) ) <_ ( # ` t ) <-> ( 1 ... N ) ~<_ t ) ) |
16 |
11 15
|
mpbid |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( 1 ... N ) ~<_ t ) |
17 |
13
|
domen |
|- ( ( 1 ... N ) ~<_ t <-> E. s ( ( 1 ... N ) ~~ s /\ s C_ t ) ) |
18 |
16 17
|
sylib |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> E. s ( ( 1 ... N ) ~~ s /\ s C_ t ) ) |
19 |
|
simpll |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ph ) |
20 |
|
ensym |
|- ( ( 1 ... N ) ~~ s -> s ~~ ( 1 ... N ) ) |
21 |
20
|
ad2antrl |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> s ~~ ( 1 ... N ) ) |
22 |
|
hasheni |
|- ( s ~~ ( 1 ... N ) -> ( # ` s ) = ( # ` ( 1 ... N ) ) ) |
23 |
21 22
|
syl |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( # ` s ) = ( # ` ( 1 ... N ) ) ) |
24 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> N e. NN0 ) |
25 |
24 8
|
syl |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( # ` ( 1 ... N ) ) = N ) |
26 |
23 25
|
eqtrd |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( # ` s ) = N ) |
27 |
|
simplrr |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> g : ( t C M ) --> R ) |
28 |
|
simprr |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> s C_ t ) |
29 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> M e. NN0 ) |
30 |
1
|
hashbcss |
|- ( ( t e. _V /\ s C_ t /\ M e. NN0 ) -> ( s C M ) C_ ( t C M ) ) |
31 |
13 28 29 30
|
mp3an2i |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( s C M ) C_ ( t C M ) ) |
32 |
27 31
|
fssresd |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( g |` ( s C M ) ) : ( s C M ) --> R ) |
33 |
|
vex |
|- g e. _V |
34 |
33
|
resex |
|- ( g |` ( s C M ) ) e. _V |
35 |
|
feq1 |
|- ( f = ( g |` ( s C M ) ) -> ( f : ( s C M ) --> R <-> ( g |` ( s C M ) ) : ( s C M ) --> R ) ) |
36 |
35
|
anbi2d |
|- ( f = ( g |` ( s C M ) ) -> ( ( ( # ` s ) = N /\ f : ( s C M ) --> R ) <-> ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) ) |
37 |
36
|
anbi2d |
|- ( f = ( g |` ( s C M ) ) -> ( ( ph /\ ( ( # ` s ) = N /\ f : ( s C M ) --> R ) ) <-> ( ph /\ ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) ) ) |
38 |
|
cnveq |
|- ( f = ( g |` ( s C M ) ) -> `' f = `' ( g |` ( s C M ) ) ) |
39 |
38
|
imaeq1d |
|- ( f = ( g |` ( s C M ) ) -> ( `' f " { c } ) = ( `' ( g |` ( s C M ) ) " { c } ) ) |
40 |
|
cnvresima |
|- ( `' ( g |` ( s C M ) ) " { c } ) = ( ( `' g " { c } ) i^i ( s C M ) ) |
41 |
39 40
|
eqtrdi |
|- ( f = ( g |` ( s C M ) ) -> ( `' f " { c } ) = ( ( `' g " { c } ) i^i ( s C M ) ) ) |
42 |
41
|
sseq2d |
|- ( f = ( g |` ( s C M ) ) -> ( ( x C M ) C_ ( `' f " { c } ) <-> ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) |
43 |
42
|
anbi2d |
|- ( f = ( g |` ( s C M ) ) -> ( ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) <-> ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) ) |
44 |
43
|
2rexbidv |
|- ( f = ( g |` ( s C M ) ) -> ( E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) <-> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) ) |
45 |
37 44
|
imbi12d |
|- ( f = ( g |` ( s C M ) ) -> ( ( ( ph /\ ( ( # ` s ) = N /\ f : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) <-> ( ( ph /\ ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) ) ) |
46 |
34 45 6
|
vtocl |
|- ( ( ph /\ ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) |
47 |
19 26 32 46
|
syl12anc |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) |
48 |
|
sstr |
|- ( ( x C_ s /\ s C_ t ) -> x C_ t ) |
49 |
48
|
expcom |
|- ( s C_ t -> ( x C_ s -> x C_ t ) ) |
50 |
49
|
ad2antll |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( x C_ s -> x C_ t ) ) |
51 |
|
velpw |
|- ( x e. ~P s <-> x C_ s ) |
52 |
|
velpw |
|- ( x e. ~P t <-> x C_ t ) |
53 |
50 51 52
|
3imtr4g |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( x e. ~P s -> x e. ~P t ) ) |
54 |
|
id |
|- ( ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) -> ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) |
55 |
|
inss1 |
|- ( ( `' g " { c } ) i^i ( s C M ) ) C_ ( `' g " { c } ) |
56 |
54 55
|
sstrdi |
|- ( ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) -> ( x C M ) C_ ( `' g " { c } ) ) |
57 |
56
|
a1i |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) -> ( x C M ) C_ ( `' g " { c } ) ) ) |
58 |
57
|
anim2d |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) -> ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) |
59 |
53 58
|
anim12d |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( ( x e. ~P s /\ ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) -> ( x e. ~P t /\ ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) ) |
60 |
59
|
reximdv2 |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) -> E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) |
61 |
60
|
reximdv |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) -> E. c e. R E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) |
62 |
47 61
|
mpd |
|- ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> E. c e. R E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) |
63 |
18 62
|
exlimddv |
|- ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> E. c e. R E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) |
64 |
1 2 3 4 5 63
|
ramub |
|- ( ph -> ( M Ramsey F ) <_ N ) |