Description: The Ramsey number is an extended real number. (This theorem does not imply Ramsey's theorem, unlike ramcl .) (Contributed by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ramxrcl | |- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) e. RR* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre | |- NN0 C_ RR |
|
2 | ressxr | |- RR C_ RR* |
|
3 | 1 2 | sstri | |- NN0 C_ RR* |
4 | pnfxr | |- +oo e. RR* |
|
5 | snssi | |- ( +oo e. RR* -> { +oo } C_ RR* ) |
|
6 | 4 5 | ax-mp | |- { +oo } C_ RR* |
7 | 3 6 | unssi | |- ( NN0 u. { +oo } ) C_ RR* |
8 | ramcl2 | |- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) e. ( NN0 u. { +oo } ) ) |
|
9 | 7 8 | sselid | |- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) e. RR* ) |