Metamath Proof Explorer


Theorem ramxrcl

Description: The Ramsey number is an extended real number. (This theorem does not imply Ramsey's theorem, unlike ramcl .) (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion ramxrcl
|- ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) e. RR* )

Proof

Step Hyp Ref Expression
1 nn0ssre
 |-  NN0 C_ RR
2 ressxr
 |-  RR C_ RR*
3 1 2 sstri
 |-  NN0 C_ RR*
4 pnfxr
 |-  +oo e. RR*
5 snssi
 |-  ( +oo e. RR* -> { +oo } C_ RR* )
6 4 5 ax-mp
 |-  { +oo } C_ RR*
7 3 6 unssi
 |-  ( NN0 u. { +oo } ) C_ RR*
8 ramcl2
 |-  ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) e. ( NN0 u. { +oo } ) )
9 7 8 sselid
 |-  ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) e. RR* )