Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
2 |
|
n0 |
|- ( R =/= (/) <-> E. c c e. R ) |
3 |
|
simpll |
|- ( ( ( M e. NN /\ R e. V ) /\ c e. R ) -> M e. NN ) |
4 |
|
simplr |
|- ( ( ( M e. NN /\ R e. V ) /\ c e. R ) -> R e. V ) |
5 |
|
0nn0 |
|- 0 e. NN0 |
6 |
5
|
fconst6 |
|- ( R X. { 0 } ) : R --> NN0 |
7 |
6
|
a1i |
|- ( ( ( M e. NN /\ R e. V ) /\ c e. R ) -> ( R X. { 0 } ) : R --> NN0 ) |
8 |
|
simpr |
|- ( ( ( M e. NN /\ R e. V ) /\ c e. R ) -> c e. R ) |
9 |
|
fvconst2g |
|- ( ( 0 e. NN0 /\ c e. R ) -> ( ( R X. { 0 } ) ` c ) = 0 ) |
10 |
5 8 9
|
sylancr |
|- ( ( ( M e. NN /\ R e. V ) /\ c e. R ) -> ( ( R X. { 0 } ) ` c ) = 0 ) |
11 |
|
ramz2 |
|- ( ( ( M e. NN /\ R e. V /\ ( R X. { 0 } ) : R --> NN0 ) /\ ( c e. R /\ ( ( R X. { 0 } ) ` c ) = 0 ) ) -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) |
12 |
3 4 7 8 10 11
|
syl32anc |
|- ( ( ( M e. NN /\ R e. V ) /\ c e. R ) -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) |
13 |
12
|
ex |
|- ( ( M e. NN /\ R e. V ) -> ( c e. R -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) ) |
14 |
13
|
exlimdv |
|- ( ( M e. NN /\ R e. V ) -> ( E. c c e. R -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) ) |
15 |
2 14
|
syl5bi |
|- ( ( M e. NN /\ R e. V ) -> ( R =/= (/) -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) ) |
16 |
15
|
expimpd |
|- ( M e. NN -> ( ( R e. V /\ R =/= (/) ) -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) ) |
17 |
|
simpl |
|- ( ( R e. V /\ R =/= (/) ) -> R e. V ) |
18 |
|
simpr |
|- ( ( R e. V /\ R =/= (/) ) -> R =/= (/) ) |
19 |
6
|
a1i |
|- ( ( R e. V /\ R =/= (/) ) -> ( R X. { 0 } ) : R --> NN0 ) |
20 |
|
0z |
|- 0 e. ZZ |
21 |
|
elsni |
|- ( y e. { 0 } -> y = 0 ) |
22 |
|
0le0 |
|- 0 <_ 0 |
23 |
21 22
|
eqbrtrdi |
|- ( y e. { 0 } -> y <_ 0 ) |
24 |
23
|
rgen |
|- A. y e. { 0 } y <_ 0 |
25 |
|
rnxp |
|- ( R =/= (/) -> ran ( R X. { 0 } ) = { 0 } ) |
26 |
25
|
adantl |
|- ( ( R e. V /\ R =/= (/) ) -> ran ( R X. { 0 } ) = { 0 } ) |
27 |
26
|
raleqdv |
|- ( ( R e. V /\ R =/= (/) ) -> ( A. y e. ran ( R X. { 0 } ) y <_ 0 <-> A. y e. { 0 } y <_ 0 ) ) |
28 |
24 27
|
mpbiri |
|- ( ( R e. V /\ R =/= (/) ) -> A. y e. ran ( R X. { 0 } ) y <_ 0 ) |
29 |
|
brralrspcev |
|- ( ( 0 e. ZZ /\ A. y e. ran ( R X. { 0 } ) y <_ 0 ) -> E. x e. ZZ A. y e. ran ( R X. { 0 } ) y <_ x ) |
30 |
20 28 29
|
sylancr |
|- ( ( R e. V /\ R =/= (/) ) -> E. x e. ZZ A. y e. ran ( R X. { 0 } ) y <_ x ) |
31 |
|
0ram |
|- ( ( ( R e. V /\ R =/= (/) /\ ( R X. { 0 } ) : R --> NN0 ) /\ E. x e. ZZ A. y e. ran ( R X. { 0 } ) y <_ x ) -> ( 0 Ramsey ( R X. { 0 } ) ) = sup ( ran ( R X. { 0 } ) , RR , < ) ) |
32 |
17 18 19 30 31
|
syl31anc |
|- ( ( R e. V /\ R =/= (/) ) -> ( 0 Ramsey ( R X. { 0 } ) ) = sup ( ran ( R X. { 0 } ) , RR , < ) ) |
33 |
26
|
supeq1d |
|- ( ( R e. V /\ R =/= (/) ) -> sup ( ran ( R X. { 0 } ) , RR , < ) = sup ( { 0 } , RR , < ) ) |
34 |
|
ltso |
|- < Or RR |
35 |
|
0re |
|- 0 e. RR |
36 |
|
supsn |
|- ( ( < Or RR /\ 0 e. RR ) -> sup ( { 0 } , RR , < ) = 0 ) |
37 |
34 35 36
|
mp2an |
|- sup ( { 0 } , RR , < ) = 0 |
38 |
37
|
a1i |
|- ( ( R e. V /\ R =/= (/) ) -> sup ( { 0 } , RR , < ) = 0 ) |
39 |
32 33 38
|
3eqtrd |
|- ( ( R e. V /\ R =/= (/) ) -> ( 0 Ramsey ( R X. { 0 } ) ) = 0 ) |
40 |
|
oveq1 |
|- ( M = 0 -> ( M Ramsey ( R X. { 0 } ) ) = ( 0 Ramsey ( R X. { 0 } ) ) ) |
41 |
40
|
eqeq1d |
|- ( M = 0 -> ( ( M Ramsey ( R X. { 0 } ) ) = 0 <-> ( 0 Ramsey ( R X. { 0 } ) ) = 0 ) ) |
42 |
39 41
|
syl5ibr |
|- ( M = 0 -> ( ( R e. V /\ R =/= (/) ) -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) ) |
43 |
16 42
|
jaoi |
|- ( ( M e. NN \/ M = 0 ) -> ( ( R e. V /\ R =/= (/) ) -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) ) |
44 |
1 43
|
sylbi |
|- ( M e. NN0 -> ( ( R e. V /\ R =/= (/) ) -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) ) |
45 |
44
|
3impib |
|- ( ( M e. NN0 /\ R e. V /\ R =/= (/) ) -> ( M Ramsey ( R X. { 0 } ) ) = 0 ) |