Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
2 |
|
simpl1 |
|- ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> M e. NN ) |
3 |
2
|
nnnn0d |
|- ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> M e. NN0 ) |
4 |
|
simpl2 |
|- ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> R e. V ) |
5 |
|
simpl3 |
|- ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> F : R --> NN0 ) |
6 |
|
0nn0 |
|- 0 e. NN0 |
7 |
6
|
a1i |
|- ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> 0 e. NN0 ) |
8 |
|
simplrl |
|- ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> C e. R ) |
9 |
|
0elpw |
|- (/) e. ~P s |
10 |
9
|
a1i |
|- ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> (/) e. ~P s ) |
11 |
|
simplrr |
|- ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( F ` C ) = 0 ) |
12 |
|
0le0 |
|- 0 <_ 0 |
13 |
11 12
|
eqbrtrdi |
|- ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( F ` C ) <_ 0 ) |
14 |
|
simpll1 |
|- ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> M e. NN ) |
15 |
1
|
0hashbc |
|- ( M e. NN -> ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) |
16 |
14 15
|
syl |
|- ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) |
17 |
|
0ss |
|- (/) C_ ( `' f " { C } ) |
18 |
16 17
|
eqsstrdi |
|- ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) |
19 |
|
fveq2 |
|- ( c = C -> ( F ` c ) = ( F ` C ) ) |
20 |
19
|
breq1d |
|- ( c = C -> ( ( F ` c ) <_ ( # ` x ) <-> ( F ` C ) <_ ( # ` x ) ) ) |
21 |
|
sneq |
|- ( c = C -> { c } = { C } ) |
22 |
21
|
imaeq2d |
|- ( c = C -> ( `' f " { c } ) = ( `' f " { C } ) ) |
23 |
22
|
sseq2d |
|- ( c = C -> ( ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) <-> ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) |
24 |
20 23
|
anbi12d |
|- ( c = C -> ( ( ( F ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) <-> ( ( F ` C ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) ) |
25 |
|
fveq2 |
|- ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) |
26 |
|
hash0 |
|- ( # ` (/) ) = 0 |
27 |
25 26
|
eqtrdi |
|- ( x = (/) -> ( # ` x ) = 0 ) |
28 |
27
|
breq2d |
|- ( x = (/) -> ( ( F ` C ) <_ ( # ` x ) <-> ( F ` C ) <_ 0 ) ) |
29 |
|
oveq1 |
|- ( x = (/) -> ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) ) |
30 |
29
|
sseq1d |
|- ( x = (/) -> ( ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) <-> ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) |
31 |
28 30
|
anbi12d |
|- ( x = (/) -> ( ( ( F ` C ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) <-> ( ( F ` C ) <_ 0 /\ ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) ) |
32 |
24 31
|
rspc2ev |
|- ( ( C e. R /\ (/) e. ~P s /\ ( ( F ` C ) <_ 0 /\ ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) |
33 |
8 10 13 18 32
|
syl112anc |
|- ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) |
34 |
1 3 4 5 7 33
|
ramub |
|- ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> ( M Ramsey F ) <_ 0 ) |
35 |
|
ramubcl |
|- ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ ( 0 e. NN0 /\ ( M Ramsey F ) <_ 0 ) ) -> ( M Ramsey F ) e. NN0 ) |
36 |
3 4 5 7 34 35
|
syl32anc |
|- ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> ( M Ramsey F ) e. NN0 ) |
37 |
|
nn0le0eq0 |
|- ( ( M Ramsey F ) e. NN0 -> ( ( M Ramsey F ) <_ 0 <-> ( M Ramsey F ) = 0 ) ) |
38 |
36 37
|
syl |
|- ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> ( ( M Ramsey F ) <_ 0 <-> ( M Ramsey F ) = 0 ) ) |
39 |
34 38
|
mpbid |
|- ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> ( M Ramsey F ) = 0 ) |