Metamath Proof Explorer


Theorem rankbnd

Description: The rank of a set is bounded by a bound for the successor of its members. (Contributed by NM, 18-Sep-2006)

Ref Expression
Hypothesis rankr1b.1
|- A e. _V
Assertion rankbnd
|- ( A. x e. A suc ( rank ` x ) C_ B <-> ( rank ` A ) C_ B )

Proof

Step Hyp Ref Expression
1 rankr1b.1
 |-  A e. _V
2 1 rankval4
 |-  ( rank ` A ) = U_ x e. A suc ( rank ` x )
3 2 sseq1i
 |-  ( ( rank ` A ) C_ B <-> U_ x e. A suc ( rank ` x ) C_ B )
4 iunss
 |-  ( U_ x e. A suc ( rank ` x ) C_ B <-> A. x e. A suc ( rank ` x ) C_ B )
5 3 4 bitr2i
 |-  ( A. x e. A suc ( rank ` x ) C_ B <-> ( rank ` A ) C_ B )