| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankr1b.1 |  |-  A e. _V | 
						
							| 2 |  | rankuni |  |-  ( rank ` U. A ) = U. ( rank ` A ) | 
						
							| 3 | 1 | rankuni2 |  |-  ( rank ` U. A ) = U_ x e. A ( rank ` x ) | 
						
							| 4 | 2 3 | eqtr3i |  |-  U. ( rank ` A ) = U_ x e. A ( rank ` x ) | 
						
							| 5 | 4 | sseq1i |  |-  ( U. ( rank ` A ) C_ B <-> U_ x e. A ( rank ` x ) C_ B ) | 
						
							| 6 |  | iunss |  |-  ( U_ x e. A ( rank ` x ) C_ B <-> A. x e. A ( rank ` x ) C_ B ) | 
						
							| 7 | 5 6 | bitr2i |  |-  ( A. x e. A ( rank ` x ) C_ B <-> U. ( rank ` A ) C_ B ) | 
						
							| 8 |  | rankon |  |-  ( rank ` A ) e. On | 
						
							| 9 | 8 | onssi |  |-  ( rank ` A ) C_ On | 
						
							| 10 |  | eloni |  |-  ( B e. On -> Ord B ) | 
						
							| 11 |  | ordunisssuc |  |-  ( ( ( rank ` A ) C_ On /\ Ord B ) -> ( U. ( rank ` A ) C_ B <-> ( rank ` A ) C_ suc B ) ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( B e. On -> ( U. ( rank ` A ) C_ B <-> ( rank ` A ) C_ suc B ) ) | 
						
							| 13 | 7 12 | bitrid |  |-  ( B e. On -> ( A. x e. A ( rank ` x ) C_ B <-> ( rank ` A ) C_ suc B ) ) |