Step |
Hyp |
Ref |
Expression |
1 |
|
rankr1b.1 |
|- A e. _V |
2 |
|
rankuni |
|- ( rank ` U. A ) = U. ( rank ` A ) |
3 |
1
|
rankuni2 |
|- ( rank ` U. A ) = U_ x e. A ( rank ` x ) |
4 |
2 3
|
eqtr3i |
|- U. ( rank ` A ) = U_ x e. A ( rank ` x ) |
5 |
4
|
sseq1i |
|- ( U. ( rank ` A ) C_ B <-> U_ x e. A ( rank ` x ) C_ B ) |
6 |
|
iunss |
|- ( U_ x e. A ( rank ` x ) C_ B <-> A. x e. A ( rank ` x ) C_ B ) |
7 |
5 6
|
bitr2i |
|- ( A. x e. A ( rank ` x ) C_ B <-> U. ( rank ` A ) C_ B ) |
8 |
|
rankon |
|- ( rank ` A ) e. On |
9 |
8
|
onssi |
|- ( rank ` A ) C_ On |
10 |
|
eloni |
|- ( B e. On -> Ord B ) |
11 |
|
ordunisssuc |
|- ( ( ( rank ` A ) C_ On /\ Ord B ) -> ( U. ( rank ` A ) C_ B <-> ( rank ` A ) C_ suc B ) ) |
12 |
9 10 11
|
sylancr |
|- ( B e. On -> ( U. ( rank ` A ) C_ B <-> ( rank ` A ) C_ suc B ) ) |
13 |
7 12
|
bitrid |
|- ( B e. On -> ( A. x e. A ( rank ` x ) C_ B <-> ( rank ` A ) C_ suc B ) ) |