| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankr1b.1 |  |-  A e. _V | 
						
							| 2 |  | pwuni |  |-  A C_ ~P U. A | 
						
							| 3 | 1 | uniex |  |-  U. A e. _V | 
						
							| 4 | 3 | pwex |  |-  ~P U. A e. _V | 
						
							| 5 | 4 | rankss |  |-  ( A C_ ~P U. A -> ( rank ` A ) C_ ( rank ` ~P U. A ) ) | 
						
							| 6 | 2 5 | ax-mp |  |-  ( rank ` A ) C_ ( rank ` ~P U. A ) | 
						
							| 7 | 3 | rankpw |  |-  ( rank ` ~P U. A ) = suc ( rank ` U. A ) | 
						
							| 8 | 6 7 | sseqtri |  |-  ( rank ` A ) C_ suc ( rank ` U. A ) | 
						
							| 9 | 8 | a1i |  |-  ( E. x e. A ( rank ` x ) = ( rank ` U. A ) -> ( rank ` A ) C_ suc ( rank ` U. A ) ) | 
						
							| 10 | 1 | rankel |  |-  ( x e. A -> ( rank ` x ) e. ( rank ` A ) ) | 
						
							| 11 |  | eleq1 |  |-  ( ( rank ` x ) = ( rank ` U. A ) -> ( ( rank ` x ) e. ( rank ` A ) <-> ( rank ` U. A ) e. ( rank ` A ) ) ) | 
						
							| 12 | 10 11 | syl5ibcom |  |-  ( x e. A -> ( ( rank ` x ) = ( rank ` U. A ) -> ( rank ` U. A ) e. ( rank ` A ) ) ) | 
						
							| 13 | 12 | rexlimiv |  |-  ( E. x e. A ( rank ` x ) = ( rank ` U. A ) -> ( rank ` U. A ) e. ( rank ` A ) ) | 
						
							| 14 |  | rankon |  |-  ( rank ` U. A ) e. On | 
						
							| 15 |  | rankon |  |-  ( rank ` A ) e. On | 
						
							| 16 | 14 15 | onsucssi |  |-  ( ( rank ` U. A ) e. ( rank ` A ) <-> suc ( rank ` U. A ) C_ ( rank ` A ) ) | 
						
							| 17 | 13 16 | sylib |  |-  ( E. x e. A ( rank ` x ) = ( rank ` U. A ) -> suc ( rank ` U. A ) C_ ( rank ` A ) ) | 
						
							| 18 | 9 17 | eqssd |  |-  ( E. x e. A ( rank ` x ) = ( rank ` U. A ) -> ( rank ` A ) = suc ( rank ` U. A ) ) |