| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankidb |
|- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
| 2 |
|
elfvdm |
|- ( A e. ( R1 ` suc ( rank ` A ) ) -> suc ( rank ` A ) e. dom R1 ) |
| 3 |
1 2
|
syl |
|- ( A e. U. ( R1 " On ) -> suc ( rank ` A ) e. dom R1 ) |
| 4 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 5 |
4
|
simpri |
|- Lim dom R1 |
| 6 |
|
limsuc |
|- ( Lim dom R1 -> ( ( rank ` A ) e. dom R1 <-> suc ( rank ` A ) e. dom R1 ) ) |
| 7 |
5 6
|
ax-mp |
|- ( ( rank ` A ) e. dom R1 <-> suc ( rank ` A ) e. dom R1 ) |
| 8 |
3 7
|
sylibr |
|- ( A e. U. ( R1 " On ) -> ( rank ` A ) e. dom R1 ) |
| 9 |
|
rankvaln |
|- ( -. A e. U. ( R1 " On ) -> ( rank ` A ) = (/) ) |
| 10 |
|
limomss |
|- ( Lim dom R1 -> _om C_ dom R1 ) |
| 11 |
5 10
|
ax-mp |
|- _om C_ dom R1 |
| 12 |
|
peano1 |
|- (/) e. _om |
| 13 |
11 12
|
sselii |
|- (/) e. dom R1 |
| 14 |
9 13
|
eqeltrdi |
|- ( -. A e. U. ( R1 " On ) -> ( rank ` A ) e. dom R1 ) |
| 15 |
8 14
|
pm2.61i |
|- ( rank ` A ) e. dom R1 |