Metamath Proof Explorer


Theorem rankel

Description: The membership relation is inherited by the rank function. Proposition 9.16 of TakeutiZaring p. 79. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankel.1
|- B e. _V
Assertion rankel
|- ( A e. B -> ( rank ` A ) e. ( rank ` B ) )

Proof

Step Hyp Ref Expression
1 rankel.1
 |-  B e. _V
2 unir1
 |-  U. ( R1 " On ) = _V
3 1 2 eleqtrri
 |-  B e. U. ( R1 " On )
4 rankelb
 |-  ( B e. U. ( R1 " On ) -> ( A e. B -> ( rank ` A ) e. ( rank ` B ) ) )
5 3 4 ax-mp
 |-  ( A e. B -> ( rank ` A ) e. ( rank ` B ) )