| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r1elssi |  |-  ( B e. U. ( R1 " On ) -> B C_ U. ( R1 " On ) ) | 
						
							| 2 | 1 | sseld |  |-  ( B e. U. ( R1 " On ) -> ( A e. B -> A e. U. ( R1 " On ) ) ) | 
						
							| 3 |  | rankidn |  |-  ( A e. U. ( R1 " On ) -> -. A e. ( R1 ` ( rank ` A ) ) ) | 
						
							| 4 | 2 3 | syl6 |  |-  ( B e. U. ( R1 " On ) -> ( A e. B -> -. A e. ( R1 ` ( rank ` A ) ) ) ) | 
						
							| 5 | 4 | imp |  |-  ( ( B e. U. ( R1 " On ) /\ A e. B ) -> -. A e. ( R1 ` ( rank ` A ) ) ) | 
						
							| 6 |  | rankon |  |-  ( rank ` B ) e. On | 
						
							| 7 |  | rankon |  |-  ( rank ` A ) e. On | 
						
							| 8 |  | ontri1 |  |-  ( ( ( rank ` B ) e. On /\ ( rank ` A ) e. On ) -> ( ( rank ` B ) C_ ( rank ` A ) <-> -. ( rank ` A ) e. ( rank ` B ) ) ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( ( rank ` B ) C_ ( rank ` A ) <-> -. ( rank ` A ) e. ( rank ` B ) ) | 
						
							| 10 |  | rankdmr1 |  |-  ( rank ` B ) e. dom R1 | 
						
							| 11 |  | rankdmr1 |  |-  ( rank ` A ) e. dom R1 | 
						
							| 12 |  | r1ord3g |  |-  ( ( ( rank ` B ) e. dom R1 /\ ( rank ` A ) e. dom R1 ) -> ( ( rank ` B ) C_ ( rank ` A ) -> ( R1 ` ( rank ` B ) ) C_ ( R1 ` ( rank ` A ) ) ) ) | 
						
							| 13 | 10 11 12 | mp2an |  |-  ( ( rank ` B ) C_ ( rank ` A ) -> ( R1 ` ( rank ` B ) ) C_ ( R1 ` ( rank ` A ) ) ) | 
						
							| 14 |  | r1rankidb |  |-  ( B e. U. ( R1 " On ) -> B C_ ( R1 ` ( rank ` B ) ) ) | 
						
							| 15 | 14 | sselda |  |-  ( ( B e. U. ( R1 " On ) /\ A e. B ) -> A e. ( R1 ` ( rank ` B ) ) ) | 
						
							| 16 |  | ssel |  |-  ( ( R1 ` ( rank ` B ) ) C_ ( R1 ` ( rank ` A ) ) -> ( A e. ( R1 ` ( rank ` B ) ) -> A e. ( R1 ` ( rank ` A ) ) ) ) | 
						
							| 17 | 13 15 16 | syl2imc |  |-  ( ( B e. U. ( R1 " On ) /\ A e. B ) -> ( ( rank ` B ) C_ ( rank ` A ) -> A e. ( R1 ` ( rank ` A ) ) ) ) | 
						
							| 18 | 9 17 | biimtrrid |  |-  ( ( B e. U. ( R1 " On ) /\ A e. B ) -> ( -. ( rank ` A ) e. ( rank ` B ) -> A e. ( R1 ` ( rank ` A ) ) ) ) | 
						
							| 19 | 5 18 | mt3d |  |-  ( ( B e. U. ( R1 " On ) /\ A e. B ) -> ( rank ` A ) e. ( rank ` B ) ) | 
						
							| 20 | 19 | ex |  |-  ( B e. U. ( R1 " On ) -> ( A e. B -> ( rank ` A ) e. ( rank ` B ) ) ) |