| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankelun.1 |
|- A e. _V |
| 2 |
|
rankelun.2 |
|- B e. _V |
| 3 |
|
rankelun.3 |
|- C e. _V |
| 4 |
|
rankelun.4 |
|- D e. _V |
| 5 |
1 2 3 4
|
rankelpr |
|- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` { A , B } ) e. ( rank ` { C , D } ) ) |
| 6 |
|
rankon |
|- ( rank ` { C , D } ) e. On |
| 7 |
6
|
onordi |
|- Ord ( rank ` { C , D } ) |
| 8 |
|
ordsucelsuc |
|- ( Ord ( rank ` { C , D } ) -> ( ( rank ` { A , B } ) e. ( rank ` { C , D } ) <-> suc ( rank ` { A , B } ) e. suc ( rank ` { C , D } ) ) ) |
| 9 |
7 8
|
ax-mp |
|- ( ( rank ` { A , B } ) e. ( rank ` { C , D } ) <-> suc ( rank ` { A , B } ) e. suc ( rank ` { C , D } ) ) |
| 10 |
5 9
|
sylib |
|- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> suc ( rank ` { A , B } ) e. suc ( rank ` { C , D } ) ) |
| 11 |
1 2
|
rankop |
|- ( rank ` <. A , B >. ) = suc suc ( ( rank ` A ) u. ( rank ` B ) ) |
| 12 |
1 2
|
rankpr |
|- ( rank ` { A , B } ) = suc ( ( rank ` A ) u. ( rank ` B ) ) |
| 13 |
|
suceq |
|- ( ( rank ` { A , B } ) = suc ( ( rank ` A ) u. ( rank ` B ) ) -> suc ( rank ` { A , B } ) = suc suc ( ( rank ` A ) u. ( rank ` B ) ) ) |
| 14 |
12 13
|
ax-mp |
|- suc ( rank ` { A , B } ) = suc suc ( ( rank ` A ) u. ( rank ` B ) ) |
| 15 |
11 14
|
eqtr4i |
|- ( rank ` <. A , B >. ) = suc ( rank ` { A , B } ) |
| 16 |
3 4
|
rankop |
|- ( rank ` <. C , D >. ) = suc suc ( ( rank ` C ) u. ( rank ` D ) ) |
| 17 |
3 4
|
rankpr |
|- ( rank ` { C , D } ) = suc ( ( rank ` C ) u. ( rank ` D ) ) |
| 18 |
|
suceq |
|- ( ( rank ` { C , D } ) = suc ( ( rank ` C ) u. ( rank ` D ) ) -> suc ( rank ` { C , D } ) = suc suc ( ( rank ` C ) u. ( rank ` D ) ) ) |
| 19 |
17 18
|
ax-mp |
|- suc ( rank ` { C , D } ) = suc suc ( ( rank ` C ) u. ( rank ` D ) ) |
| 20 |
16 19
|
eqtr4i |
|- ( rank ` <. C , D >. ) = suc ( rank ` { C , D } ) |
| 21 |
10 15 20
|
3eltr4g |
|- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` <. A , B >. ) e. ( rank ` <. C , D >. ) ) |