Metamath Proof Explorer


Theorem rankelun

Description: Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006) (Proof shortened by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypotheses rankelun.1
|- A e. _V
rankelun.2
|- B e. _V
rankelun.3
|- C e. _V
rankelun.4
|- D e. _V
Assertion rankelun
|- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` ( A u. B ) ) e. ( rank ` ( C u. D ) ) )

Proof

Step Hyp Ref Expression
1 rankelun.1
 |-  A e. _V
2 rankelun.2
 |-  B e. _V
3 rankelun.3
 |-  C e. _V
4 rankelun.4
 |-  D e. _V
5 rankon
 |-  ( rank ` C ) e. On
6 rankon
 |-  ( rank ` D ) e. On
7 5 6 onun2i
 |-  ( ( rank ` C ) u. ( rank ` D ) ) e. On
8 7 onordi
 |-  Ord ( ( rank ` C ) u. ( rank ` D ) )
9 elun1
 |-  ( ( rank ` A ) e. ( rank ` C ) -> ( rank ` A ) e. ( ( rank ` C ) u. ( rank ` D ) ) )
10 elun2
 |-  ( ( rank ` B ) e. ( rank ` D ) -> ( rank ` B ) e. ( ( rank ` C ) u. ( rank ` D ) ) )
11 ordunel
 |-  ( ( Ord ( ( rank ` C ) u. ( rank ` D ) ) /\ ( rank ` A ) e. ( ( rank ` C ) u. ( rank ` D ) ) /\ ( rank ` B ) e. ( ( rank ` C ) u. ( rank ` D ) ) ) -> ( ( rank ` A ) u. ( rank ` B ) ) e. ( ( rank ` C ) u. ( rank ` D ) ) )
12 8 9 10 11 mp3an3an
 |-  ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( ( rank ` A ) u. ( rank ` B ) ) e. ( ( rank ` C ) u. ( rank ` D ) ) )
13 1 2 rankun
 |-  ( rank ` ( A u. B ) ) = ( ( rank ` A ) u. ( rank ` B ) )
14 3 4 rankun
 |-  ( rank ` ( C u. D ) ) = ( ( rank ` C ) u. ( rank ` D ) )
15 12 13 14 3eltr4g
 |-  ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` ( A u. B ) ) e. ( rank ` ( C u. D ) ) )