Metamath Proof Explorer


Theorem rankidn

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankidn
|- ( A e. U. ( R1 " On ) -> -. A e. ( R1 ` ( rank ` A ) ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( rank ` A ) = ( rank ` A )
2 rankr1c
 |-  ( A e. U. ( R1 " On ) -> ( ( rank ` A ) = ( rank ` A ) <-> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) )
3 1 2 mpbii
 |-  ( A e. U. ( R1 " On ) -> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) )
4 3 simpld
 |-  ( A e. U. ( R1 " On ) -> -. A e. ( R1 ` ( rank ` A ) ) )