Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . (Contributed by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rankidn | |- ( A e. U. ( R1 " On ) -> -. A e. ( R1 ` ( rank ` A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( rank ` A ) = ( rank ` A ) |
|
2 | rankr1c | |- ( A e. U. ( R1 " On ) -> ( ( rank ` A ) = ( rank ` A ) <-> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) ) |
|
3 | 1 2 | mpbii | |- ( A e. U. ( R1 " On ) -> ( -. A e. ( R1 ` ( rank ` A ) ) /\ A e. ( R1 ` suc ( rank ` A ) ) ) ) |
4 | 3 | simpld | |- ( A e. U. ( R1 " On ) -> -. A e. ( R1 ` ( rank ` A ) ) ) |